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ABSTRACT
Stochastic policies often outperform deterministic ones. This is
especially true for Constrained Stochastic Shortest Path (C-SSP)
problems, a popular approach to planning under uncertainty with
multiple objectives. Nevertheless, there are moral concerns about
stochastic policies that should deter us from selecting them. In this
paper, we identify some of these moral concerns and offer ‘accept-
ability constraints’ that allow only certain stochastic policies to
be selected. We propose a novel C-SSP solver able to integrate our
moral acceptability constraints, we evaluate its performance in a rel-
evant test problem, and we show that our approach can successfully
produce acceptable policies in morally significant domains.
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Philosophical/theoretical foundations of artificial intelli-
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1 INTRODUCTION
Many planning problems involve morally-loaded objectives, such as
protecting personal safety or improving health outcomes. Often these
are accompanied by non-moral objectives, such as time or monetary
constraints, and significant uncertainty. A popular approach is
to model such problems as Constrained Stochastic Shortest Path
(C-SSP) problems, where the various objectives are captured by
different cost functions, one of which is optimised, while the others

This work is licensed under a Creative Commons Attribution
International 4.0 License.

AIES’22, August 1–3, 2022, Oxford, United Kingdom
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9247-1/22/08.
https://doi.org/10.1145/3514094.3534193

are constrained. The optimal policy in a C-SSP is usually a stochastic
policy (as are the vast majority of near-optimal policies) [1, 7].

Being optimal with respect to expected cost is a moral good when
that expected cost captures morally significant objectives. Never-
theless, stochastic policies can have moral downsides. Choosing a
stochastic policy over a deterministic one can introduce morally
relevant risks and disparate outcomes, raising moral concerns about
harm, risk, inequality and unfairness. Despite the benefits of adopt-
ing stochastic policies, we might sometimes have most reason not
to choose them.

Our paper addresses these moral concerns directly. We identify
the various moral concerns that might be had about stochastic
policies and propose several additional constraints to distinguish
acceptable policies, which address our concerns, from unaccept-
able ones, which do not. We also propose a method for weighing
the gains with respect to expected cost against our acceptability
measures, relative to a baseline (often deterministic) policy. This
allows us to select stochastic policies that are not only feasible (that
satisfy our objectives) but are also acceptable (the moral reasons
to avoid some stochastic policies don’t apply to them). We offer
an approximate anytime algorithm that can do just that, selecting
plans that are both feasible and acceptable in the context of morally
significant C-SSPs. Our work, therefore, offers concrete ways to
choose stochastic policies while being sensitive to moral concerns.
This, in turn, enables us to use stochastic policies more effectively
in a range of morally significant domains.1

The paper is structured as follows. Section 2 identifies two areas
of related work and explains how our paper extends the existing
literature. Section 3 provides the required technical background
on C-SSPs. Section 4 contains the bulk of our analysis and philo-
sophical contribution. There, we tackle the problem of how to
further constrain a C-SSP to avoid the various moral concerns we
may have about stochastic policies. Section 5 introduces our novel
solver, which allows us to enforce the constraints developed in
Section 4. Section 6 demonstrates our solver’s effectiveness in an
example domain. Section 7 summarises our findings and provides
suggestions for future work.

1Due to their greater robustness, stochastic policies are widely used beyond C-SSPs.
In particular, they are also frequently sought in the context of ordinary SSPs (which
feature a single objective and no constraint), even though there always exists a deter-
ministic optimal policy for such a problem. Our moral concerns and accompanying
constraints apply equally to stochastic policies for these simpler problems.
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2 RELATEDWORK
Ethically-Conscious Planning

There has lately been increased interest in (i) finding ethically
acceptable plans under uncertainty in morally relevant domains,
and (ii) evaluating existing policies for their ethical content [3, 6,
14, 16, 20]. In research on (i), the state-of-the-art approach is an
‘Ethically Compliant Autonomous System’ (ECAS) [16, 20]. In an
ECAS, a Markov Decision Process (MDP) – a close relative to the
plain SSP – is defined for some task, and the solver must find the
optimal policy for this MDP that satisfies a ‘moral principle’, which
is a mapping from policies to booleans that purportedly evaluates
the moral acceptability of the policy. Multiple ECAS formulations
are proposed to represent particular moral theories, such as the
divine command theory or virtue ethics [20]. The main benefit
of these approaches is that only the objective of task completion
is minimised, while ethical considerations are introduced as con-
straints. This avoids convoluting various conflicting incentives into
the objective function, which can lead to unpredictable and unde-
sirable behaviours in policies. Similarly, in [6], autonomous agents
minimise the cumulative ‘concern’ associated with the principles
they break in completing a task.

In the research on (ii), evaluating the permissibility of existing
plans, there is recent work such as [14], which again attempts to
define the formal properties of plans that are (im)permissible from
the perspective of moral viewpoints (e.g., utilitarianism, deontology,
etc.). It then explores the computational complexity of evaluating
whether a given plan adheres to the properties of some such view-
point. (This is done for planning in certain, rather than uncertain,
environments.) A theme in this body of literature is the method
of focusing on optimising the completion of a non-moral task so
long as it has no morally bad side effects. Consider, for example,
an autonomous car tasked with reaching a destination without
injuring or endangering pedestrians.

We address an important and under-examined set of problems
within this broader context. The combination of optimising for a
morally significant objective, while remaining responsive to addi-
tional non-moral constraints, is a natural problem-framing in many
areas. Consider, for example, an agent tasked with coordinating a
disaster response, or with treating a patient at a hospital [12, 13, 23].
The primary objective in such scenarios is to ensure the safety and
wellbeing of the affected people, though it would also be irrespon-
sible and impractical to disregard competing objectives, like the
conservation of time and money. Our paper, therefore, makes a
significant contribution to this existing body of work by extending
consideration to multi-objective contexts as well as by focusing on
primary tasks which are explicitly morally significant.

Risk and Variance Constraints
There is existing research on limiting the risk and variance in-

duced by policies in MDPs. For example, [9] proposes a method for
penalising the expected reward of a particular policy for a MDP
if the expectation is subject to excessive variance. [15] proposes a
move towards constrained mean-variance optimisation, in which a
policy is sought for which the expected cumulative reward obeys
some lower bound and the variance over cumulative reward obeys
an upper bound. Other proxies for risk besides variance have also
been employed. [4, 5]

However, none of this work focuses explicitly on risk in a moral
setting. Further, insofar as it has upshots for this kind of risk, it
only aims to mitigate risk and variance arising from the stochastic
effects of actions. Our work contributes to this existing literature by
focusing specifically on the other potential source of risk and vari-
ance: stochastic policies. Stochastic action effects are an instance of
environmental stochasticity. While one policy might be riskier than
another in such an environment, all risk is ultimately attributable to
the environment as opposed to the policy itself. Stochastic policies
introduce risk by using probabilistic devices to determine the exact
strategy to be taken on a particular execution of the policy. Given
that C-SSP solvers often settle on stochastic policies, if we want to
solve morally-significant problems with C-SSPs, we must consider
whether the risk introduced by these policies is morally relevant.
We’ll first offer some background on C-SSPs.

3 BACKGROUND: (CONSTRAINED)
STOCHASTIC SHORTEST PATH PROBLEMS

An (unconstrained) Stochastic Shortest Path Problem (SSP) is a
planning problem in an uncertain environment with a well-defined
start point and end points in the state space [2]. Formally, such a
problem is defined as the tuple ⟨𝑆, 𝑠0,𝐺,𝐴, 𝑃,𝐶⟩, where:
• 𝑆 is the set of states, and:
– 𝑠0 ∈ 𝑆 is the ‘initial’ or ‘start’ state
– 𝐺 ⊂ 𝑆 is the set of valid end or ‘goal’ states
• 𝐴 is the set of actions
– 𝐴(𝑠) denotes the actions that are applicable from a state
𝑠 ∈ 𝑆

• 𝑃 is the transition probability function, where 𝑃 (𝑠 ′ |𝑠, 𝑎) is
the probability of transitioning from state 𝑠 to state 𝑠 ′ when
applying action 𝑎 ∈ 𝐴(𝑠)
• 𝐶 (𝑠, 𝑎) : 𝑆 × 𝐴 → R+ defines a strictly positive real cost
associated with taking action 𝑎 from state 𝑠

In a SSP, the problem is to find a policy enabling an agent to
reach the goal 𝐺 starting from the initial state 𝑠0, while incurring
the minimum cumulative expected cost. A policy may be either
deterministic or stochastic, where:

• A deterministic policy is a function 𝜋 : 𝑆 → 𝐴 which, for
any given state, returns a particular action.
• A stochastic policy can be interpreted in two ways, which
are effectively equivalent in expectation but are both useful
interpretations in certain scenarios [10]:
– A function 𝜋 : 𝑆 ×𝐴→ [0, 1], which returns the probabil-
ity with which a particular action should be taken from a
particular state. In this paper, this will be referred to as a
distributed stochastic policy. This is the canonical defi-
nition of a ‘stochastic policy’; however, as we will make
use of both this and the next interpretation in this paper,
it is worth introducing this distinguishing terminology.

– A function 𝜋 : {𝜋𝐷 |𝜋𝐷 ∈ Π𝐷 } → [0, 1], or a function
which defines a distribution over the SSP’s set of deter-
ministic policies Π𝐷 , and returns a probability with which
a particular deterministic policy 𝜋𝐷 should be followed.
In this paper, this will be referred to as a concentrated
stochastic policy.



Note that a concentrated policy 𝜋conc. may easily be converted to a
distributed stochastic policy 𝜋dist. that is equivalent in expectation,
by defining:

𝜋dist. (𝑠, 𝑎) =
∑︁

𝜋𝐷 ∈Π𝐷

𝜋conc. (𝜋𝐷 ) · 𝜋𝐷 (𝑠, 𝑎)

where, for a deterministic policy 𝜋𝐷 , 𝜋𝐷 (𝑠, 𝑎) = 1 if 𝜋𝐷 (𝑠) = 𝑎 and
0 otherwise.

When following a certain policy 𝜋 in an SSP, we write𝑉 𝜋 (𝑠) for
the ‘value of 𝑠 under 𝜋 ’, i.e., the expected cumulative cost (according
to the cost function 𝐶) incurred if 𝜋 is adhered to from 𝑠 until a
goal state is reached. Similarly, 𝑄𝜋 (𝑠, 𝑎) represents the ‘Q-value of
𝑠, 𝑎 under 𝜋 ’, i.e., the expected cumulative cost if action 𝑎 is taken
from state 𝑠 , and policy 𝜋 is adhered to thereafter. We can therefore
denote the expected cost or value of a policy 𝜋 in totality as𝑉 𝜋 (𝑠0).
An optimal policy is one that minimises 𝑉 𝜋 (𝑠0). It is well known
that, for any SSP, at least one optimal policy is deterministic.

A Constrained Stochastic Shortest Path Problem (C-SSP)
is an extension of the SSP model (described above) to capture sit-
uations in which multiple competing cost functions need to be
considered. For a search and rescue drone, for example, one might
consider two cost functions: the number of victims located, and
the energy levels in the drone’s battery. The problem is to find a
policy optimising one of these cost functions (say, the number of
victims located) while keeping the others (here, just the energy)
under given bounds. Much of the groundwork described above for
(unconstrained) SSPs holds, but there are some key differences.

Formally, a C-SSP introduces an additional 𝑘 ‘secondary’ cost
functions to coexist with what we now call our ‘primary’ cost, 𝐶 .
For clarity, 𝐶 is instead referred to as 𝐶0 in the C-SSP, while our
other 𝑘 functions are referred to as 𝐶1,𝐶2, ...,𝐶𝑘 ; this defines a cost
function vector

−→
𝐶 = [𝐶0,𝐶1, ...,𝐶𝑘 ]. In the C-SSP context, states

and state-action pairs are valued with respect to the 𝑖𝑡ℎ cost under
policy 𝜋 with the extended notations 𝑉 𝜋

𝑖
(𝑠) and 𝑄𝜋

𝑖
(𝑠, 𝑎) for some

state 𝑠 and some action 𝑎. That is, the subscript on these functions
denotes the cost with respect to which that evaluation is being
made.

The objective is to find a policy 𝜋 that minimises the expected
cumulative primary cost 𝑉 𝜋

0 (𝑠0), and keeps each expected cumula-
tive secondary costs 𝑉 𝜋

𝑖
(𝑠0) below a given bound 𝑐𝑖 , for 1 ≤ 𝑖 ≤ 𝑘 .

Writing
−→̂
𝑐 = [𝑐1, 𝑐2, ..., 𝑐𝑘 ] for the vector of these secondary cost

bounds allows us to define a C-SSP as a tuple ⟨𝑆, 𝑠0,𝐺,𝐴, 𝑃,
−→
𝐶 ,
−→̂
𝑐 ⟩.

We will also introduce to our vocabulary the notion of feasibility:
a policy 𝜋 for some C-SSP is feasible if and only if it satisfies the
secondary cost constraints.

One crucially important property that we wish to draw the
reader’s attention to is that, unlike in the unconstrained SSP case,
the optimal feasible policy for a C-SSP is no longer guaranteed to
be deterministic; in the general case, it will be a stochastic policy
[7, 8]. Therefore, when executing a policy for a C-SSP, two sources
of stochasticity typically arise. The first is the stochasticity of the
policy: it captures a probabilistic choice of actions. The second is the
stochasticity of the state transition function: it captures the proba-
bilistic effects of actions. A planner generating policies will have
control over the former but not the latter. This paper is concerned
with the ethical implications of stochastic policies. For this reason,

and to avoid any confusion between these two sources of uncer-
tainty, the running example we use in Section 4 when discussing
ethical considerations deliberately features deterministic action
effects only. However, our proposed constraints and computational
approach also apply when the policies’ actions have stochastic ef-
fects. The more complex example we use in Section 6 to evaluate
our approach does feature such stochastic effects.

4 MITIGATING ETHICAL CONCERNS ABOUT
STOCHASTICITY

As we have said, stochastic policies can often do the best, in expec-
tation, at realising our primary objectives within the constraints
given by our secondary objectives. Nevertheless, there may be eth-
ical reasons not to adopt them. In this section, we consider three
sets of ethical concerns about stochastic policies, offering standards
that policies must meet if they are to address them. Let’s begin with
an example.

4.1 The Autonomous Medic
4.1.1 Problem. A medic is operating in a hospital. The medic’s
stated purpose is to administer painkillers in order to reduce each
patient’s level of self-reported pain, measured on an integer scale
of zero to ten, inclusive.2

At each timestep during treatment, the actions available to the
medic are to (a) administer a particular painkiller from its avail-
able set, or (b) discharge the patient, which will end the treatment
episode. Each painkiller in the available set will reduce the patient’s
pain by 𝑥 with probability 𝑝 . If 𝑥 is greater than the patient’s current
pain level, the patient will be left a pain level of 0 (i.e., the patient’s
pain level can only be reduced to zero and no further). We assume
that each timestep leaves sufficient time for any painkiller to take
complete effect during the transition to the next state, and that any
administered painkillers’ effect does not degrade during an episode.
Applying the ‘discharge’ action transitions us to a goal state of the
C-SSP.

In the initial state 𝑠0, no painkillers have been administered.
When determining whether to administer a painkiller or discharge,
and which painkiller to administer, there are two relevant costs:

• 𝐶0 is themorally-loaded cost function and the primary cost of
the C-SSP. It’s constituted by the pain level of the discharged
patient. If the medic applies the discharge action, then, for
some state 𝑠 , 𝐶0 (𝑠, ‘discharge’) will be equal to the current
pain level of the patient at 𝑠 ; for any other action 𝑎, 𝐶0 (𝑠, 𝑎)
will be a negligible positive constant.
• 𝐶1 is a secondary cost in the C-SSP which represents the
monetary cost of an administered painkiller. Each painkiller𝑎
will have an associated monetary cost 𝑎cost, and so𝐶1 (𝑠, 𝑎) =
𝑎cost for any state 𝑠 . Discharging has no monetary cost; i.e.,
𝐶1 (𝑠, ‘discharge’) = 0 for any 𝑠 .

The objective of the C-SSP is to minimise 𝐶0 (minimise the pa-
tient’s pain upon discharge), subject to an upper bound 𝑐1 on the
expected cost of the policy from the initial state according to 𝐶1.

2We make the simplifying assumption that the patients’ self-reported pain levels are
accurate.



4.1.2 Example Instance. In this instance, which we will call 𝑇 , we
assume for simplicity (i) that there are no stochastic effects, and
hence that all stochasticity is introduced by the medic; and (ii) that
in the initial state 𝑠0, the patient’s self-reported pain is 10.

The medic in 𝑇 has three available painkillers:
• 𝐴, which reduces pain by 9 and costs $1200
• 𝐵, which reduces pain by 7 and costs $1000
• 𝐶 , which reduces pain by 4 and costs $200

The objective of the C-SSP is to minimise the patient’s pain upon
discharge, subject to an upper bound 𝑐1 on the expected cost. Let
us assume that 𝑐1 = 1000, i.e., there is an upper bound of $1000 on
the expected combined cost of the painkillers administered to the
patient. Let us also assume that the same painkiller cannot be given
more than once.

So what is the best deterministic policy? Let 𝜋𝐴 be the determin-
istic policy that has the medic administer painkiller𝐴 at time 0, then
discharge the patient at time 1. 𝜋𝐵 and 𝜋𝐶 are defined identically
with respect to painkillers 𝐵 and 𝐶 . Each policy can be evaluated
as follows:
• 𝑉 𝜋𝐴

0 (𝑠0) = 1, and 𝑉 𝜋𝐴
1 (𝑠0) = 1200

• 𝑉 𝜋𝐵
0 (𝑠0) = 3, and 𝑉 𝜋𝐵

1 (𝑠0) = 1000
• 𝑉 𝜋𝐶

0 (𝑠0) = 6, and 𝑉 𝜋𝐶
1 (𝑠0) = 200

Policy 𝜋𝐴 has too high a secondary cost to be feasible: it violates
the constraint to cost less than $1000. While both policies 𝜋𝐵 and
𝜋𝐶 are feasible (they cost $1000 or less), 𝜋𝐵 is best because it results
in less patient pain upon discharge (and thus has a lower primary
cost than 𝜋𝐵 ).

However, if we allow ourselves to consider stochastic policies
as well as deterministic ones, it looks like we can do better with
respect to the primary objective while satisfying the secondary
cost constraints. Consider the (concentrated) stochastic policy 𝜋𝑆 ,
defined as 𝜋𝑆 (𝜋𝐴) = 0.8, 𝜋𝑆 (𝜋𝐶 ) = 0.2, and 𝜋𝑆 (𝜋𝑋 ) = 0 for any
other deterministic policy 𝜋𝑋 . With this policy, the agent would
follow 𝜋𝐴 80% of the time and 𝜋𝐶 20% of the time. With this policy,
• 𝑉 𝜋𝑆

0 (𝑠0) = (0.8) (1) + (0.2) (6) = 2
• 𝑉 𝜋𝑆

1 (𝑠0) = (0.8) (1200) + (0.2) (200) = 1000
Policy 𝜋𝑆 is therefore feasible: it costs $1000 per patient on aver-

age. It also results in a better outcome for patients on average than
the best deterministic policy, as 𝜋𝑆 results in patients being dis-
charged with a reported pain level of 2 on average. This is achieved
because a cheap but bad deterministic policy is taken with proba-
bility 0.2, saving enough money in expectation to feasibly perform
(with a probability of 0.8) a deterministic policy with better patient
outcomes and which would otherwise be too expensive.

We therefore have some reasons to prefer the stochastic policy
in this instance. However, there may still be other reasons to pre-
fer the deterministic policy. We next discuss three sets of ethical
concerns which, if they can’t be addressed, give us reason to prefer
deterministic policies. We propose several different constraints on
policy choice to address these concerns.

4.2 Caring about the worst off
4.2.1 The worst off individual outcome. In the Autonomous Medic
Problem instance 𝑇 , deterministic policies ensure that the pain
levels of all patients are reduced by the same amount. Stochastic

policies reduce some patients’ pain levels by a lot and some by a
little. There may, therefore, be possible policy executions that are
so bad for some patients that these policies should be rejected. In
general, stochastic policies tend to allow for a range of possible
outcomes for those affected by them. This raises concerns for those
negatively affected. Wemight wonder how bad the stochastic policy
could be for its unluckiest moral subject (i.e., the one subject to the
worst execution of the policy), and whether this potential low level
of wellbeing is acceptable. Let’s suppose that there’s a threshold
belowwhich levels of wellbeing are unacceptable. Even if a person’s
actual level of wellbeing remains above this threshold as a result
of an application of the policy, the person may still be wronged
in virtue of being exposed to the risk that their wellbeing could
fall below the threshold. Many ethicists hold that being subjected
to the risk of harm is a harm, even if you are not in fact harmed
[11, 17].

To ensure that no policy is chosen that allows anyone’s wellbeing
to fall below some predefined threshold, we can constrain policy
choice by placing an upper bound h on the primary cost of the
worst-case outcome of any stochastic decision that is a feasible
policy. Let’s consider what this looks like for both a concentrated
stochastic policy and for a distributed stochastic policy.
• For a concentrated stochastic policy 𝜋 for a C-SSP 𝐶 , the
worst-case primary cost will be the maximum expected pri-
mary cost of any deterministic policy for 𝐶 that 𝜋 gives us
a nonzero chance of sampling; call this value 𝑤 . We can
calculate𝑤 as follows:
– LetΠ𝐷 denote the set of deterministic policies for𝐶 . Throu-
ghout the paper, we will use 𝜋𝐷 as a variable for the de-
terministic policies in Π𝐷 .

– Then𝑤 = max{𝜋 (𝜋𝐷 )>0}𝑉
𝜋𝐷
0 (𝑠0), where 𝑠0 is the initial

state of 𝐶 .
– As discussed above, we want to define an upper bound on
𝑤 , here ℎ, where𝑤 exceeding ℎ would indicate a level of
unacceptable harm or risk of harm to our subject(s). So,
the desired constraint will take the following form:

max
{𝜋 (𝜋𝐷 )>0}

𝑉
𝜋𝐷
0 (𝑠0) ≤ ℎ (C1.1)

• For a distributed stochastic policy 𝜋 for a C-SSP𝐶 , and a non-
goal state 𝑠 in the state space of 𝐶 , the worst-case primary
cost will be the maximum primary Q-value associated with
any action that 𝜋 gives us a nonzero chance of sampling in
𝑠; let us call this value𝑤𝑠 . We can calculate𝑤𝑠 as follows:
– 𝑤𝑠 = max{𝑎∈𝐴(𝑠) |𝜋 (𝑠,𝑎)>0} 𝑄𝜋

0 (𝑠, 𝑎)
– As in the concentrated case, we want to introduce an
upper bound on𝑤𝑠 , hereℎ𝑠 , where𝑤𝑠 exceeding ℎ𝑠 would
indicate an unacceptable level of harm or risk of harm
to our subject(s). So the desired constraint will take the
following form:3

max
{𝑎∈𝐴(𝑠) |𝜋 (𝑠,𝑎)>0}

𝑄𝜋
0 (𝑠, 𝑎) ≤ ℎ𝑠 (C1.2)

4.2.2 A more robust notion of ‘the worst off’. The constraints just
proposed (C1.1 and C1.2) are sensitive to the plight of the absolute
worst-off moral subject under a particular stochastic policy. They
3Note that (C3.2) applies just to an individual state 𝑠 , but could (should) be applied for
all non-goal states in the morally significant C-SSP.



require that the expected harm (or risk of harm) faced by the worst-
off does not exceed some upper bound h. But these constraints don’t
track how likely (or unlikely) it is that the worst cases manifest,
and the likelihood that they do is also morally relevant.

Compare, for example, the distributions of possible outcomes in
the Example Instance T. There, stochastic policy 𝜋𝑆 followed action
𝐶 with probability 0.2 (pain level 6), and action 𝐴 with probabil-
ity 0.8 (pain level 1). It might be wrong to release patients with
pain level 6 simpliciter, but a more sophisticated approach would
also factor in the likelihood that a patient will actually be released
with that pain level [5, 19]. To capture this, we can use the no-
tion of ‘value at risk’. When we consider the value at risk, we
look at the worst case scenarios that jointly carry a fixed cumu-
lative probability. More precisely, the value at risk of a random
variable 𝑋 with ‘confidence’ 𝛼 ∈ [0, 1] is the minimum value in
𝑋 ’s distribution with cumulative probability greater than 𝛼 , i.e.,
𝑉𝑎𝑅𝛼 (𝑋 ) = min{𝑥 |𝑃 (𝑋 ≤ 𝑥) ≥ 𝛼}. Hence, we can have confi-
dence that with probability 𝛼 costs will not exceed 𝑉𝑎𝑅𝛼 (𝑋 ). We
can then introduce the ‘conditional value at risk’ (CVaR) of 𝑋 with
confidence 𝛼 as 𝐶𝑉𝑎𝑅𝛼 (𝑋 ) = E[𝑋 |𝑋 ≥ 𝑉𝑎𝑅𝛼 (𝑋 )] [5, 19], i.e., the
expected value of the tail of the distribution that exceeds the value
at risk or the expected value of the (1 − 𝛼) (worst-off) quantile.

Observe that the whole C-SSP can be summarized by looking
at a random variable 𝑋𝜋 , where sampling from 𝑋𝜋 allows us to
compute how much expected cost the planner would incur if it
were to execute policy 𝜋 in the process. Since we have two ways
of doing the computation (we can use concentrated or distributed
policies), we use two random variables,𝑋𝜋 and 𝑌𝜋,𝑠 , which take the
values 𝑉 𝜋𝐷

0 (𝑠0) and 𝑄
𝜋
0 (𝑠, 𝑎) with probabilities 𝜋 (𝜋𝐷 ) and 𝜋 (𝑠, 𝑎)

respectively.
We can then generalize constraints (C1.1 and C1.2) to consider

not only the absolute worst case scenarios, but the expected cost of
all of the worst case scenarios with joint probability (1 − 𝛼):

𝐶𝑉𝑎𝑅𝛼 (𝑋𝜋 ) ≤ ℎ (C2.1)
𝐶𝑉𝑎𝑅𝛼 (𝑌𝜋,𝑠 ) ≤ ℎ𝑠 (C2.2)

4.3 Caring about distribution
In the above discussion, we were concerned with the worst off.
However, some reasons to be concerned about the worst off involve
only their relative levels of wellbeing – their levels of well-being
relative to others affected by the policy – as opposed to their absolute
levels of wellbeing. If there are moral reasons to promote equality
and fairness, then there are moral reasons to consider how the
wellbeing levels of different people affected by a policy compare to
one another.

We show how to take into consideration three different measures
of inequality in constraining our choice of policies. Each allows
us to set upper bounds on how much of each type of disparity in
outcomes we allow from a policy.

4.3.1 The worst off and the average. The first measure involves the
disparity between the worst off and average subjects. We can define
acceptable policies to be those on which the worst case scenario
is not too far from the policy’s expected cost. We capture this as

follows:

max
{𝜋 (𝜋𝐷 )>0}

𝑉
𝜋𝐷
0 (𝑠0) −

∑︁
𝜋𝐷 ∈Π𝐷

𝜋 (𝜋𝐷 ) ·𝑉 𝜋𝐷
0 (𝑠0) ≤ 𝑚 (C3.1)

max
{𝑎∈𝐴(𝑠) |𝜋 (𝑠,𝑎)>0}

𝑄𝜋
0 (𝑠, 𝑎) −

∑︁
𝑎∈𝐴(𝑠)

𝜋 (𝑠, 𝑎) ·𝑄𝜋
0 (𝑠, 𝑎) ≤ 𝑚𝑠 (C3.2)

4.3.2 The worst off and the best off. A second measure involves the
disparity between the worst off and the best off under a policy. Two
policies might have the same distance between the worst off and the
average subject. However, if we care about inequality understood
as the distance between the best off and worst off, we might object
to using a policy that has an especially large spread.

Importantly, this concern is independent of the mean of that
distribution. In a scenario in which the worst outcome is near the
mean, but the best outcomes are exceedingly better, the previous
constraint will not have a significant effect. If we want to capture
this, we can require the distance between the worst and the best
case scenarios to be bounded:

max
{𝜋 (𝜋𝐷 )>0}

𝑉
𝜋𝐷
0 (𝑠0) − min

{𝜋 (𝜋𝐷 )>0}
𝑉
𝜋𝐷
0 (𝑠0) ≤ 𝑑 (C4.1)

max
{𝑎∈𝐴(𝑠) |𝜋 (𝑠,𝑎)>0}

𝑄𝜋
0 (𝑠, 𝑎) − min

{𝑎∈𝐴(𝑠) |𝜋 (𝑠,𝑎)>0}
𝑄𝜋
0 (𝑠, 𝑎) ≤ 𝑑𝑠 (C4.2)

4.3.3 Variance. The best knownmeasure of dispersion of a random
variable, such as 𝑋𝜋 , is its variance 𝑉𝑎𝑟 (𝑋𝜋 ) = E[(𝑋𝜋 − 𝜇𝑋𝜋

)2],
which captures its expected normalized squared distance to its mean.
Consider a scenario in which we have two policies, 𝜋1 and 𝜋2. Under
both 𝜋1 and 𝜋2, patients will leave the hospital with the same level
of pain in expectation, say 3. Assume also that, under both policies,
all the worst off patients have the same pain level upon discharge,
as do all the best off patients – say 4 and 2 respectively. These
assumptions guarantee that constraints (C3) and (C4) are easily
met. But suppose that 𝜋1 has greater variance than 𝜋2, because 𝜋1
is bimodal – most people are in the extremes – and 𝜋2 has most
people near the mean. We might have reason to object to 𝜋1 on
grounds of inequality, and this can be captured straightforwardly
by requiring policies to have a bounded variance:

𝑉𝑎𝑟 (𝑋𝜋 ) = E[(𝑋𝜋 − 𝜇𝑋𝜋
)2] ≤ 𝑣 (C5.1)

𝑉𝑎𝑟 (𝑌𝜋,𝑠 ) = E[(𝑌𝜋,𝑠 − 𝜇𝑌𝜋,𝑠 )
2] ≤ 𝑣𝑠 (C5.2)

4.4 Caring about trade-offs between policies
The constraints outlined above help decide whether a policy, con-
sidered on its own, is morally acceptable. This enables basic com-
parisons between policies in terms of acceptability (one might be
acceptable; another unacceptable). However, we might also want to
make more sophisticated comparisons between policies. We might
want to know whether the benefits of a stochastic policy with re-
spect to the expected primary cost come at too high a price given
moral concerns we’ve been discussing, relative to some other avail-
able policy. This is significant because the best stochastic policy is
often better in expectation than the best deterministic one – this
was borne out in our Example Instance T – but often with the conse-
quence that variance, risk, and other morally concerning elements
are introduced into the policy.

For this analysis, let us begin with a baseline policy 𝛽 : a known
feasible solution to the C-SSP.



As we have seen, not everything that is morally relevant is cap-
tured by the expected cost; this is why we have offered our earlier
constraints. Our constraints all have a general form. Given some
acceptability measurement on a policy 𝜙 (𝜋), and an upper bound
𝑏 on the value of that measurement:

𝜙 (𝜋) ≤ 𝑏 (AM)

For example, consider constraint (C4.1). There, 𝜙 (𝜋) is
max{𝜋 (𝜋𝐷 )>0}𝑉

𝜋𝐷
0 (𝑠0) −min{𝜋 (𝜋𝐷 )>0}𝑉

𝜋𝐷
0 (𝑠0) – that is, we take

as our acceptability measurement the difference between the worst-
and the best-off outcome of the stochastic decision. Variance, simi-
larly, would be our acceptability measurement in constraint (C5.1),
giving us an overall measure of distribution spread; and so forth
with the other proposed constraints.

This commonality raises the possibility of expressing a compara-
tive constraint in a general form. Consider a new ‘candidate’ policy
𝜋 which we may want to choose over 𝛽 on account of it having a
lower expected primary cost. In order to decide whether to prefer
𝜋 to 𝛽 , we can constrain our choice by saying 𝜋 can be preferred
only if its relative decrease in expected primary cost justifies the in-
crease of 𝜙 (𝜋) relative to 𝜙 (𝛽) for some acceptability measurement
𝜙 . Grounding this in the Example Instance T, we may not prefer the
stochastic policy 𝜋𝑆 over the best deterministic policy 𝜋𝐵 as, for
the decrease in expected cost that it offers, it worsens the outcomes
of the worst-off by too much, or introduces too much variance.

Let us get a bit more concrete. Assume that 𝛽 is (i) the best (ii)
feasible (iii) deterministic policy.4 Let 𝜋 be a feasible stochastic policy
with a lower expected primary cost; hence, 𝑉 𝛽

0 (𝑠) > 𝑉 𝜋
0 (𝑠). In

comparative terms, this leads straightforwardly to a quantification
of the ‘upside’ of 𝜋 over 𝛽 in terms of the Expected Primary Cost
Reduction (EPCR):

𝑉
𝛽

0 (𝑠) −𝑉
𝜋
0 (𝑠) (EPCR)

Meanwhile, taking any of our acceptability measurements 𝜙 , we
can consider another point of difference: how much of an Accept-
ability Measurement Increase (AMI) do we get by choosing 𝜋 over
𝛽?

𝜙 (𝜋) − 𝜙 (𝛽) (AMI)

One way to codify this idea of trading off between the two
policies, then, is with the following constraint:

𝑉
𝛽

0 (𝑠) −𝑉
𝜋
0 (𝑠) ≥ 𝜃 (𝜙 (𝜋) − 𝜙 (𝛽)) (C6)

(C6) requires that the EPCR outweighs the AMI (subject to a weight-
ing parameter 𝜃 applied to the AMI). In practice, this means that,
with 𝛽 in hand, (C6) forces the planner to find only policies whose
EPCR justifies any AMI they introduce.5

4Importantly, such a policy does not always exist in C-SSPs; in some cases there might
not be any feasible deterministic, or even stochastic policy to work with. But it does
exist in our example𝑇 (𝜋𝐵 is such a policy).
5The present example starts from the assumption that the test policy 𝜋 outperforms
the baseline policy 𝛽 with respect to expected cost while it under-performs with
respect to the acceptability measurement; but there are other interesting scenarios.
Consider the opposite case, namely when the baseline policy 𝛽 is better in expectation
but worse with respect to the acceptability measurements, relative to 𝜋 . If that is the
case, then the appropriate constraint might require reversing the inequality:

𝑉 𝜋
0 (𝑠) −𝑉

𝛽

0 (𝑠) ≤ 𝜃 (𝜙 (𝑋𝛽 ) − 𝜙 (𝑋𝜋 )) (C7)

We leave this constraint untreated, because it is not significantly different from (C6).

Here 𝜃 plays an important conceptual role: it is the parameter
that allows us to compare the moral value captured by the two
different measures represented in the constraint. Choosing the
right 𝜃 requires consideration of (i) the scale of the acceptability
measurement being used, and (ii) the actual importance we want
the acceptability measurement to hold relative to expected cost.
That is, do we want the expected outcome of, e.g., the worst-off
person to hold equal weight with the average person, or less weight,
or more? We expect the answer to this question to depend on the
decision context.

Opting for a stochastic policy over a deterministic one can have
both moral upsides and moral downsides. In this section, we have
provided additional acceptability constraints to capture the moral
downsides of stochastic policies not captured by the expected cost.
We’ve also offered a way to compare the moral upsides and down-
sides of stochastic policies with any feasible baseline policy.

5 STAN-MS: A STOCHASTIC ANYTIME
ALGORITHM FOR MORALLY SIGNIFICANT
C-SSPS

In this section, we introduce a novel C-SSP solution method de-
signed to integrate the constraints offered in the previous section.
We call this a StochasticAnytime algorithm forMorally Significant
C-SSPs (StAn-MS). This method iteratively improves an initial dis-
tribution over the deterministic policy space (i.e., a concentrated
stochastic policy) by randomly sampling batches of deterministic
policies and introducing them to the distribution if they allow a
closer-to-optimal (but still feasible and acceptable) concentrated
policy to be defined. While, in general, the algorithm does not
guarantee optimality, we show that it will converge to the optimal
solution under certain conditions – conditions which will plausibly
be met by many practical problems.

5.1 Algorithm Overview
The basic structure of our algorithm is as follows. We first need
an initial concentrated policy: a distribution over the deterministic
policy space Π𝐷 that is (i) a feasible C-SSP policy, (ii) reasonably
performant with regards to the primary objective, and (iii) accept-
able with regards to any of the constraints from Section 4 that we
may want to apply in some problem instance. Let us call the subset
of the deterministic policies which are active under this distribution
Π̂. Following this, we require:

• a process for sampling new deterministic policies fromΠ𝐷\Π̂
• a solver for re-optimising the distribution 𝑝 over the union
of the current Π̂ and the sampled new policies, such that the
distribution remains feasible and acceptable

On a high level, the reader should be able to see that this structure
enables a process of converging upon an optimal or at least ‘good’
and feasible solution to the raw C-SSP that also obeys our moral
acceptability constraints, and therefore can balance these competing
considerations. We now describe our implementation of the three
components mentioned above. The pseudo code for our algorithm
is given in Appendix A.1.



5.1.1 Initial policy. For the first requirement noted above – the
initial concentrated policy – we leverage the optimal feasible deter-
ministic policy to the C-SSP.6 The attraction of this option is that
the policy will, in general, be relatively performant with respect to
the primary objective – although not optimal, in general, for the
C-SSP. Moreover, it will trivially satisfy all acceptability constraints
raised in Section 4 by virtue of introducing no policy stochasticity.
So we initialise Π̂ = {𝜋∗

𝐷
} for the optimal deterministic policy 𝜋∗

𝐷
.

Such a policy can be computed by solving a Mixed-Integer Linear
Program (MILP) in the space of occupation measures [7]. This is
the method we use in our implementation. A slight modification of
the heuristic search algorithm i-dual [22] would also be possible.

5.1.2 Stochastic policy re-optimisation. We now address the third
requirement above (we’ll examine the second next). Given a subset
of the deterministic policy space, a distribution over which will
become our new current-best concentrated stochastic policy, how
do we find the optimal distribution which is (i) feasible and (ii)
acceptable with respect to our constraints? To do this, we extend
the ‘Reduced Master Problem’ for column-generation-based C-SSP
solving methods, a Linear Program (LP) which offers the ability to
find the optimal feasible distribution [10].

This LP is structured as follows. If we consider a probability
𝑝𝜋𝐷 associated with each 𝜋𝐷 ∈ Π̂, we optimise for the values of 𝑝
that minimise the overall expected primary cost of the distribution
while ensuring that the secondary costs do not exceed their bounds
in expectation:

min
𝑝

∑︁
𝜋𝐷 ∈Π̂

𝑝𝜋𝐷𝑉
𝜋𝐷
0 (𝑠0) s.t. (CX.1) - (CX.3) (LP)

𝑝𝜋𝐷 ≥ 0 ∀𝜋𝐷 ∈ Π̂ (CX.1)∑︁
𝜋𝐷 ∈Π̂

𝑝𝜋𝐷 = 1 (CX.2)∑︁
𝜋𝐷 ∈Π̂

𝑝𝜋𝐷𝑉
𝜋𝐷
𝑗
(𝑠0) ≤ 𝑐 𝑗 ∀𝑗 ∈ {1, . . . , 𝑘} (CX.3)

While this is a helpful start, so far it doesn’t enforce our moral
acceptability constraints. However, because our acceptability con-
straints are all framed as non-strict inequalities, they can be in-
tegrated into this program relatively easily. For example, if we
especially care about the worst off, we might wish to enforce (C1.1),
an upper threshold on the worst-case expected cost. To do this, we
would just need to make a trivial rewrite of 𝜋 (𝜋𝐷 ) for the equiva-
lent variable 𝑝𝜋𝐷 to have the following constraint which could be
introduced to the above program:

max
{𝜋𝐷 ∈Π𝐷 |𝑝𝜋𝐷 >0}

𝑉
𝜋𝐷
0 (𝑠0) ≤ ℎ (CX.4)

If we were also concerned with distribution, we might want to
enforce (C3.1) – a bound on the disparity between the worst-off and
average expected cost. With the same substitution, this constraint
is ready for integration into the program.

max
{𝜋𝐷 ∈Π𝐷 |𝑝𝜋𝐷 >0}

𝑉
𝜋𝐷
0 (𝑠0) −

∑︁
𝜋𝐷 ∈Π𝐷

𝑝𝜋𝐷 ·𝑉
𝜋𝐷
0 (𝑠0) ≤ 𝑚 (CX.5)

6We acknowledge that there will not always be such a policy for a given C-SSP, but
we take it as a simplifying assumption here; indeed there are other reasonable options
for this initial distribution where such a policy does not exist.

There is a computational price to pay for these constraints: they
involve taking the maximum value over a set, which leads to the
introduction of binary variables that turn the original LP into a
harder-to-solve MILP.

We also give particular attention to constraint (C6), which in-
troduced the notion of a comparative constraint relative to some
baseline (as opposed to appealing to an upper threshold on some ac-
ceptability measure, as the preceding constraints did). Integrating
the constraint form of (C6) is a particular strength of our algo-
rithm’s structure. At all times during execution, we already possess
a ‘current-best’ feasible and acceptable policy due to its anytime
nature. This effectively gives us a good baseline concentrated policy
𝛽 for free at each timestep – we simply need to record the current
best policy’s expected primary cost as well as the relevant accept-
ability measures (i.e., its worst-case expected cost, or its conditional
value at risk, etc.).

Using this baseline 𝛽 , we can then integrate (C6) into the pro-
gram, with 𝑉 𝜋

0 (𝑠0) replaced with its equivalent representation in
terms of 𝑝 and Π̂ on the left hand side:

𝑉
𝛽

0 (𝑠) −
∑︁

𝜋𝐷 ∈Π̂
𝑝𝜋𝐷𝑉

𝜋𝐷
0 (𝑠0) ≥ 𝜃 · (𝜙 (𝜋) − 𝜙 (𝛽)) (CX.6)

For brevity, we omit auxiliary constraints that may need to be
added to the problem depending on which acceptability measure
is integrated into this constraint. For example, if conditional value
at risk is used, several auxiliary constraints will be needed – we
follow the formula for calculating it over discrete distributions
presented by [18]. One thing to note is that computing this particu-
lar acceptability measure does require the introduction of bilinear
auxiliary constraints to the program, rendering it a non-convex
Mixed-Integer Quadratically Constrained Program (MIQCP). How-
ever, as the number of decision variables in the program scales
linearly with respect to |Π̂ |, which we generally do not expect
to be an extraordinarily large set, this is not too computationally
prohibitive a result.

To summarise, the constraints that we formalised in Section 4
for concentrated stochastic policies can be integrated with nearly
no overheads in terms of design. (C1.1)-(C6) can all be introduced
or removed independently from the program – with the caveat that
enforcing them also requires introducing the auxiliary variables and
constraints for calculating the acceptability measures themselves.

5.1.3 Sampling new deterministic policies. Finally, we discuss the
second requirement for our algorithm, which is a method for ex-
ploring new deterministic policies which could be added to the
current-best concentrated stochastic policy’s active set. While simi-
lar approaches for solving plain C-SSPs – like column generation
– are able to use guided approaches which identify deterministic
policies in Π𝐷 which are guaranteed to facilitate improving upon
the current best solution, these approaches do not extend well to
our situation, where the distribution optimisation problem solved
at each timestep is more complex and no longer linear.

We get around this by simply sampling batches of𝑛 deterministic
policies from Π𝐷 at each timestep for some preconfigured 𝑛 ∈ N,
and adding them to Π̂ before invoking our redistribtion program.
After re-optimising, we redefine Π̂ as {𝜋𝐷 |𝜋𝐷 ∈ Π̂ ∧ 𝑝𝜋𝐷 > 0},



discarding unused deterministic policies to avoid Π̂ growing need-
lessly. Sampling new deterministic policies in batches rather than
one at a time is a mitigation strategy for the fact that we are no
longer adding policies which provably improve our solution. A
larger sample size opens the possibility of finding good distribu-
tions which assign nonzero probabilities to a larger number of
deterministic policies. In our approach, we sample from a uniform
distribution over Π𝐷 .

5.2 Advantages and Limitations
StAn-MS produces concentrated stochastic policies. However, as
explained in Section 3, these can easily be converted to an in-
expectation equivalent distributed stochastic policy.7

As an algorithm, StAn-MS is not without limitations. It is an
approximate approach, and inexact relative to the column genera-
tion approach for regular C-SSPs. In general, it cannot guarantee
convergence to the optimal policy. However, we can trivially ob-
serve that if our batch sample size 𝑛 is larger than the number of
deterministic policies that take a nonzero probability in the opti-
mal (morally acceptable) concentrated stochastic policy 𝜋∗, and we
are sampling from the full set Π𝐷 , then in unlimited iterations we
will provably find 𝜋∗. So, in certain problem domains where the
concentrated representations of optimal stochastic policies tend to
utilise a smaller number of deterministic policies than what we can
comfortably sample from Π𝐷 at each iteration, we may find that
we converge to the optimal policy for most problem instances.

Additionally, more sophisticated sampling strategies may be
needed to apply StAn-MS in real-world, large-scale problems. Sim-
ilarly, devising a method for finding an initial solution which is
easier to compute than 𝜋∗

𝐷
but still feasible and acceptable would

benefit the scalability of this approach.
Nonetheless, our move away from existing leading C-SSP solvers

is, we argue, well motivated. The dual linear-program-based solvers
such as 𝑖-dual and 𝑖2-dual introduced by [21, 22] are problematised
when attempting to integrate our constraints on two fronts. First,
these solvers produce distributed stochastic policies. Enforcing any
of our constraints that invoke states’ Q-values requires a signif-
icant modification to the dual linear program underlying these
approaches that renders that program a mixed-integer quadrati-
cally constrained program – which is far more computationally
intensive. Second, they do not offer a well-justified method for
defining and using a ‘baseline’ policy of the kind needed for con-
straint (C6). This is largely because it introduces the need for each
transient state to have its own notion of an acceptable baseline pol-
icy, which ultimately leads to unworkable inconsistencies between
these baselines. Meanwhile, the column-generation-based approach
introduced by [10] could not be straightforwardly applied to our
use case either. Since our acceptability constraints are universally
non-linear, the linearity of the underlying reduced master prob-
lem of that approach could not be maintained, which hamstrings
attempts to use a column-generation approach.

7However, it should be noted that after such a conversion from an acceptable concen-
trated policy, it does not necessarily follow that the distributed equivalent satisfies the
corresponding distributed constraints we presented in Section 4 from all states.

6 RESULTS
In this section, we evaluate the performance and effectiveness of the
StAn-MS algorithm in a test instance of the autonomous medic C-
SSP environment. This instance, which is detailed in Appendix A.2,
includes stochastic action effects (i.e. pain reduction) and requires
the administration of many painkillers in sequence. We present
visualisations of the evolution of the current best solution through
StAn-MS’s improvement iterations. This allows us to compare the
change over time of the policy’s expected primary cost with the
corresponding change in our acceptability measures. (The worst-
case primary cost, expected- vs. worst-case primary cost difference,
and conditional value at risk of the stochastic policy.) We do this
with and without our acceptability constraints to demonstrate that
they have the desired effect on the solving process. We also report
and comment on the relative differences in solve time and primary
expected cost when we do enforce the acceptability constraints,
and when we do not.

6.1 Visualising Constraint Enforcement
We visualise the evolution of policies in the StAn-MS algorithm,
from the initial deterministic policy to the final policy returned
by the algorithm after 𝑡 improvement iterations. We visualise this
change over time with respect to two metric categories at each
timestep:
• The expected primary cost of the current best feasible and
acceptable policy, i.e., the expected remaining patient pain
after discharge.
• The value of a couple of the various acceptability measures
that we have introduced throughout this paper. To keep
things simple we avoid plotting all of these measures, but
instead choose just two:
– The ‘Conditional Value at Risk’ of the policy, which gives
us an example of a measure thats’ useful when ’caring
about the worst off’. For these results, we use an 𝛼 of 0.9
– meaning we can interpret this measure as the expected
primary cost of the 90th percentile of the distribution over
deterministic policies (i.e., the ‘most costly’ top 10%).

– The ‘Expected-Worst Primary Cost Difference’ of the pol-
icy, which gives us an example of a measure thats’ useful
when ‘caring about distribution’ – this is the difference
between the expected primary cost of our current best
solution and its worst-case primary cost.

All of the following results were produced with the StAn-MS
algorithm using 100 improvement iterations and a random sample
size of 20 deterministic policies at each iteration. Each problem
was solved 20 times, so the following lineplots represent the mean
values achieved over these repetitions with the shaded regions
representing the confidence interval.

We begin by presenting the policy evolution whenwe solve StAn-
MS without enforcing any of the moral acceptability constraints
that we have formulated. This means that the algorithm will treat
the automated medic instance as an ordinary (morally insignificant)
C-SSP. Figure 1 visualises this convergence. We can see that within
100 iterations, the expected primary cost of the current best feasible
and acceptable policy converges from the optimal deterministic
policy’s (approximately 0.84) to within a negligible distance of the



Figure 1: Change in the current best feasible policy over 100
improvement iterations for StAn-MS with no moral accept-
ability constraints. The decrease in expected primary cost
of the policy is plotted against our example acceptability
measures.

optimal stochastic policy’s (approx. 0.69). However, we also see
on the right of this figure that our acceptability measures increase
significantly from the initial to the eventual solution, with the
expected-worst difference settling at about 2.2 and the conditional
value at risk settling at about 1.5 – and these are alarmingly high
in context.

With this baseline behaviour established, we can evaluate the
effectiveness of our various constraints in inducing morally accept-
able stochastic policies.

6.1.1 Enforcing a Conditional Value at Risk Threshold. Figure 2(a)
visualises the policy evolution over time if we enforce our upper
threshold on conditional value at risk (C2.1); we enforce an upper
threshold of 1.2 in this case. We can see that StAn-MS is able to
find a best solution that is competitive with the optimal stochastic
policy in terms of expected primary cost, but also obeys the upper
bound upon the conditional value at risk at all iterations.

6.1.2 Enforcing an Expected-Worst Primary Cost Difference Thresh-
old. Figure 2(b) visualises the policy evolution over time if we
enforce our upper threshold on expected-worst primary cost dif-
ference (C3.1); we enforce an upper threshold of 0.5. Again, this
bound is obeyed while the solver still manages to significantly im-
prove upon the initial solution by introducing acceptable policy
stochasticity.

6.1.3 Trading off Expected Primary Cost Against Conditional Value
at Risk. We additionally give an example in Figure 2(c) of oper-
ationalising the constraint form (C6), leveraging the conditional
value at risk acceptability measure as our 𝜙 in this specific case.
Recall the intuition of this constraint form. At each iteration 𝑖 ,
the decrease in expected primary cost must be more than the 𝜃 -
weighted increase in the acceptability measure (conditional value
at risk), relative to iteration 𝑖 − 1. This is shown with 𝜃 simply
configured to 1.0. The conditional value at risk is visibly compliant,
and increases less than was observed in our initial unconstrained
solution.

6.2 Discussion
Overall, our results demonstrate that StAn-MS is capable of produc-
ing concentrated stochastic policies which avoid introducing policy
stochasticity in morally unacceptable ways. All of our proposed
constraints induce their intended effects in terms of how the algo-
rithm develops and improves upon its best feasible and acceptable
solution over time. Moreover, as the raw expected primary costs
of the found solutions indicate, in many cases we can induce these
acceptable planning behaviours with minimal effect on the solution
quality in terms of the expected primary cost of the returned policy.
Let us not forget that when our primary cost is morally significant,
as in this domain, achieving low expected primary cost is a moral
good, all else being equal. Specifically, compared to solving the C-
SSP without enforcing any acceptability constraints with StAn-MS
– which produced solutions with on average an expected primary
cost 17.06% lower than the optimal deterministic policy’s in our ex-
periments – we saw improvements over the optimal deterministic
policy of 16.63% with an upper threshold of 1.2 on conditional value
at risk, 16.53% with an upper threshold of 0.5 on expected-worst
primary cost difference, and 14.49% with (C6) applied to conditional
value at risk with 𝜃 = 1.0. Given the already-stated benefits of
enforcing our constraints, these are relatively small optimality gaps
being given up for considerable gain in moral policy acceptability.

It is also worthwhile to consider the times taken to solve the
instance under various constraint combinations. Relative to a solve
time of 4.315 seconds to solve the instance with StAn-MS with no
acceptability constraints, we saw solve times of 4.813 seconds when
bounding expected-worst primary cost difference, 10.607 seconds
when bounding conditional value at risk, and 13.196 seconds when
“trading off” conditional value at risk with (C6).8

The solve times for the expected-worst primary cost difference
bound is promisingly quite similar to that of the acceptability-
unbounded solve time, given that this constraint makes our modi-
fied reduced master problem into a mixed integer program. This
has positive implications for all the constraints we have introduced
which only raise the complexity of the distribution reoptimisation
problem to this mixed integer level. The solve time does increase sig-
nificantly once constraints are introduced which require computing
the conditional value at risk. This is to be expected, since it intro-
duces bilinear (non-convex) constraints into the modified reduced
master problem. These results raise interesting design decisions
between using robust but complex acceptability measures such as
conditional value at risk, versus some other easier-to-compute (but
less expressive) acceptability measure.

7 CONCLUSION
In this paper, we have studied the moral significance of stochas-
ticity in C-SSPs. The results are articulated in Section 4, where we
provided different arguments for different constraints on what we
called acceptability measurements 𝜙 . We concluded that section
by presenting a constraint (C6), that allows trade-offs between the
moral upsides and moral downsides of stochasticity. Constraints of
the form (C6) are justified onmoral grounds, but are new to the liter-
ature. For this reason, we designed a novel C-SSP solver, Stochastic
Anytime algorithm for Morally Significant C-SSPs (StAn-MS),
8Computed on an instance with a 2019 2.6 GHz i7 CPU and 16GB of memory.



(a) CVaR, upper bounded at 1.2 (b) Expected-worst primary cost difference, upper
bounded at 0.5

(c) CVaR when (C6) is enforced
with 𝜃 set to 1.0

Figure 2: Change in expected primary cost and acceptability measure of best feasible, acceptable solution over time, for 3
different acceptability constraints.

capable of handling those more complex constraints. Finally, we
presented experimental results.

Section 4 has the bulk of the philosophical argument. There we
identified two locations for moral value in our framework: one
associated with the expected primary cost; one associated with
caring about the worst off and caring about the distribution. We
do not claim to have given an exhaustive account of all possible
moral concerns about stochastic policies. The main lesson from
the section is that stochasticity has both moral upsides and moral
downsides, and that we should weigh them against each other.

Sections 5 has the bulk of the computer science contribution.
Constraints of the form (C6) are new and morally motivated, and
there is no literature that we are aware of that can handle such
C-SSP constraints well. In particular, dual-LP-based solvers face
difficulties with regards to computational complexity and lack a
natural way to introduce a ‘baseline’ policy for (C6), while column-
generation-based solvers do not extend particularly well to nonlin-
ear constraints. While there is still progress to be made in the areas
of efficient initial policy computation and in informed sampling
strategies for new deterministic policies in our algorithm, we claim
it is able to handle the constraints we have raised far more naturally
than current leading C-SSP solvers.

The constraints and computational approach proposed in our pa-
per can accommodate stochastic effects of policy actions. However,
a deeper philosophical question is whether the very same ethical
issues that arise when choosing a stochastic policy also arise when
actions have stochastic effects. We suspect that the ethical issues
will be very similar (and thus that our proposed acceptability mea-
sures are appropriate in those contexts). However, further work
must be done to determine if there are significant moral differ-
ences, given that policy decisions are under our control while the
stochastic effects arising from actions are not.

To conclude, we hope to have made progress by providing a
clear way to encode complex moral considerations with formal
constraints, and a novel algorithmic approach to deal with them.
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A APPENDIX
A.1 Pseudo Code for StAn-MS
Our algorithm combines the elements described in Section 5 as
follows.9

Algorithm 1 StAn-MS
Input: MC:: C-SSP, params:: Tuple⟨Float⟩, t:: int, n:: int

Output: 𝜋 :: (Π𝐷 → [0, 1])
1: 𝜋∗

𝐷
← optimalDetPolicy(𝑀𝐶)

2: Π̂ ← {𝜋∗
𝐷
}

3: 𝑝 ← {𝜋∗
𝐷
: 1.0}

4: 𝑜𝑏 𝑗 ← 𝑉
𝜋∗
𝐷

0 (𝑀𝐶.𝑠0) ⊲ Expected Primary Cost of solution
5: 𝑚 ← calculateInitialAcceptabilityMeasures(𝑀𝐶, Π̂, 𝑝)
6: while 𝑡 > 0 do
7: Πnew ← sampleDetPolicies(𝑀𝐶,𝑛)
8: (𝑜𝑏 𝑗 ′, Π̂′, 𝑝 ′,𝑚′) ← reoptimise({Π̂ ∪ Πnew}, params,𝑚)
9: if 𝑜𝑏 𝑗 ′ < 𝑜𝑏 𝑗 then ⊲ Only update if a better solution found
10: 𝑜𝑏 𝑗 ← 𝑜𝑏 𝑗 ′

11: Π̂ ← Π̂′

12: 𝑝 ← 𝑝 ′

13: 𝑚 ←𝑚′

14: end if
15: 𝑡 ← 𝑡 − 1
16: end while
17: 𝜋 :: (Π𝐷 → [0, 1])
18: for 𝜋𝐷 ∈ Π̂ do
19: 𝜋 (𝜋𝐷 ) ← 𝑝𝜋𝐷
20: end for
21: return 𝜋

We pass to the algorithm:
• A C-SSP
• A tuple of parameters (each constraint we have introduced
requires one, e.g., (C1)-(C5) require constants for the bounds
and (C6) requires the balancing constant 𝜃 .)

9Our implementation can be accessed at https://github.com/chevans-lab/ethical-stoch-
policies.

• The number of improvement iterations to perform
• The number of deterministic policies to sample at each iter-
ation

In lines 1-6, we initialise our solution, as well as calculate the
relevant acceptability measures for the solution that are needed to
define the baseline for our tradeoff constraints (stored in the map
𝑚). In lines 6-16, we iteratively sample new solutions, find a new
solution, and store the new solution if it is an improvement. Note
that we are guaranteed never to find a worse solution at 𝑡 than
at 𝑡 − 1 since 𝑡 − 1’s solution will trivially also be a solution at 𝑡 ;
nonetheless, for efficiency we avoid updating our solution if the
new solution has an equal objective value to the old one. Finally, in
lines 19-22 we convert the solution into a concentrated stochastic
policy 𝜋 (we assume that for any deterministic policy 𝜋𝐷 that we
don’t define a mapping for at this stage, 𝜋 (𝜋𝐷 ) = 0).

A.2 Medic Instance Used in Experiments
For evaluating our algorithm, we introduce a new, more detailed
instance of the automated medic domain than the instance 𝑇 that
was referred to in Section 4. In this instance, we have the following
defining factors:
• Three medications 𝐴, 𝐵 and 𝐶 , where:
– 𝐴 costs $1000, and reduces patient pain by 10 with proba-
bility 0.5, 6 with probability 0.25, and 5 with probability
0.25.

– 𝐵 costs $600, and reduces patient pain by 6with probability
0.5, 5 with probability 0.25, and 3 with probability 0.25.

– 𝐶 costs $500, and reduces patient pain by 5with probability
0.8, and 0 with probability 0.2.

• An upper bound on expected monetary cost of the policy at
$1200.

Recall that a state of the problem is defined in terms of the
self-reported pain of a patient at that timestep, and the list of
already-administered painkillers.10 So to provide an example of
the transition function of the problem for one state-action pair (we
avoid enumerating further for the sake of brevity), we might have:

𝑃 (⟨4, [𝐵,𝐶]⟩ | ⟨10, [𝐶]⟩, 𝐵) = 0.5
𝑃 (⟨5, [𝐵,𝐶]⟩ | ⟨10, [𝐶]⟩, 𝐵) = 0.25
𝑃 (⟨7, [𝐵,𝐶]⟩ | ⟨10, [𝐶]⟩, 𝐵) = 0.25

𝑃 (𝑠 | ⟨10, [𝐶]⟩, 𝐵) = 0 for all other 𝑠 ∈ 𝑆

Looking at the cartesian product of possible pain levels {0, ..., 10}
and the powerset of {𝐴, 𝐵,𝐶}, we can see that this instance will
have as many as 11 ·23 = 88 transient states, and 88 goal states (with
a one to one transition mapping between these two sets when the
‘discharge’ action is applied in the former). However, in practice the
reachable state space of the instance is smaller on account of the
fact that not all reported pain levels between 0 and 10 can possibly
be reached by a certain combination of the available painkillers.

Recall also that if a painkiller’s randomly sampled pain reduction
exceeds the pain of the patient at the state where it is being applied,
then the patient’s pain will be 0 rather than negative at the successor

10Technically, we implement this as a list of already-administered actions (so including
the discharge action), as this allows us to differentiate transient and goal states more
simply.



state. So for example, if 𝐵 were administered to a patient with a
pain level of 5, then their pain level would transition to 0 with
probability 0.75 and 2 with probability 0.25.

Finally, recall that only discharge actions incur a non-negligible
primary cost (which equals the patient’s pain at time of discharge)
and only painkiller actions incur a secondary/monetary cost.
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