
Radical Pooling and Imprecise Probabilities∗

Forthcoming at Erkenntnis

Ignacio Ojea Quintana

Abstract

This paper focuses on radical pooling, or the question of how to aggregate credences when there is a

fundamental disagreement about which is the relevant logical space for inquiry. The solution advanced is

based on the notion of consensus as common ground (Levi [30]), where agents can find it by suspending

judgment on logical possibilities. This is exemplified with cases of scientific revolution. On a formal level,

the proposal uses algebraic joins and imprecise probabilities; which is shown to be compatible with the

principles of marginalization, rigidity, reverse bayesianism, and minimum divergence commonly endorsed

in these contexts. Furthermore, I extend results from previous work by Stewart and Ojea Quintana

[43, 44] to show that pooling sets of imprecise probabilities can satisfy important pooling axioms.

1 Introduction

There are various candidate interpretations of an opinion pool in the epistemological literature: a rational

consensus; a compromise adopted for the purpose of group decision making; the opinion a group member

adopts after learning the opinion of her ‘epistemic peers’; the opinion an external agent adopts upon being

informed of the n expert opinions, etc. [18, 47]. The interpretative line endorsed in this essay is the first one:

pooling considered as a form of consensus for the sake of the argument. Following the literature on pooling,

agents’ attitudes are modeled by probability functions over an algebra of events. Much of the literature

[9, 18, 47] focused on a constrained form of disagreement among the parties, namely when they disagree

solely on the degree of belief assigned to events on a shared outcome and event space. The purpose of this

paper is to generalize the question of pooling to cover cases when agents disagree radically ; not only on their

probabilistic judgments but also on the logical space over which those judgments are made.

Imprecise probabilities allow for an interesting and philosophically well-motivated account of consensus

[30, 39]: consensus as common ground. Consider first the case of full or plain belief. Konieczny and Pino-

Perez [25] provides a good survey of the literature on belief merging of propositional bases. For each of

the propositions in the doxastic space of possibilities, agents are said to have three attitudes: acceptance,

rejection, or suspension of judgment. At the outset of inquiry, inquirers may seek consensus as shared

agreement in their beliefs. This could be achieved by retaining whatever beliefs are accepted by all parties

and suspending judgment on those that are not shared. Inquiry starting from the consensus view can proceed

without begging questions against parties in the consensus, allowing various hypotheses of concern to receive

a fair hearing. Such a consensus constitutes a neutral starting point for subsequent inquiry.
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ments. This paper was supported by Australian Research Council Grant DP190101507 and funding from the Humanising
Machine Intelligence Grand Challenge Project at the Australian National University.
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The idea that parties joining their efforts in inquiry or decision making should restrict themselves to their

shared agreements can be extended to judgments of probability in the imprecise probabilities setting. In

this setting agents credal attitudes are modeled by sets of probabilities tpiuiPI . To suspend judgment among

some number of probability distributions is to use them for the purposes of inference and decision making. If

the parties seeking consensus all agree that a distribution p is not permissible, then the consensus position

reflects that agreement and rules it out. A set of probability functions represents the shared agreements

among the group concerning which probability functions are permissible to use in inference and decision

making. This avenue was explored by Stewart and Ojea Quintana [43, 44]. The purpose of this essay is to

extend this approach to the case of radical pooling.

In this setup, a well informed modeler or arbiter is given a group of agents who disagree radically, with each

agent i having an event space, a σ-algebra of propositions ă Ai ą, and a distribution ă pi ą on that. Their

task is to aggregate or pool the information in those profiles in a way that reflects the consensus as common

ground. In the disagreement literature [11], and in the pooling literature [9], it is usually assumed that

agents agree on the event space, but not on the probability distribution. I here relax that assumption; agents

can be in disagreement about the event space. Intuitively, the event space constitutes the logical space of

propositions over which our agents have probabilistic attitudes.1 Agents are said to disagree radically if their

event spaces are different. Other forms of disagreement are non-radical. The task here is to find a consensus

position among parties, a sort of pooling operation over the logical spaces and their credal attitudes towards

them. Furthermore, this is a third person perspective project, which is distinct but related to the first person

question of (un)awareness in epistemology. In cases of (un)awareness a single agent grows or contracts their

set of possibilities to form a new set of possibilities. These types of belief changes have been explored by

Bradley [2], and more recently by Steele & Stefánsson [41] and Mahtani [32] in the probabilistic case; by

Cresto [4] in an AGM-style belief revision, and within game theory in the literature by Fagin & Halpern [13],

Halpern [20], Dekel et al [6], and Modica & Rustichini [34]. Section 3 elaborates on the relations between

the project here and issues of awareness growth.

The guiding idea defended here is that the common ground consensus involves a sort of suspension of

judgment on what is logically possible. Similar to the case of plain belief, the common ground is strongest

position that is weak enough to be compatible with everyone’s views, and therefore constitutes a good

non-question begging starting point for inquiry.

The paper has six sections. The next section motivates the view with an example from the history of

science. The third one presents the view of consensus as common ground in detail, acknowledges certain

assumptions, justifies the third person perspective, and argues for taking the join of the algebras as the logical

pool. Section 4 argues that (i) marginalization, (ii) rigidity and reverse bayesianism, and (iii) divergence lead

to the adoption of imprecise probabilities when agents expand their probabilistic judgments to larger algebras.

The following section extends results from previous work by Stewart and Ojea Quintana [43, 44] to show that

pooling sets of imprecise probabilities can satisfy important pooling axioms. The final section is conclusive.

1Or for that matter, doxastic attitudes.
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2 A Motivating Example

2.1 The Priestley - Lavoisier debate

Finding consensus in the presence of radical disagreement resembles questions about (revolutionary) theory

change in philosophy of science. Central to the revolutionary view of science advanced by Kuhn [26, 27] and

Feyerabend [14] is the claim that language used in a field of science changes so radically during a revolution

that the old language and the new one are not inter-translatable. More generally, they espoused the idea that

in those situations opposing theories are incommensurable. Similarly, agents disagreeing about the logical

space of possibilities over which they make their probabilistic judgments might share no common basis on

which to measure their divergence.

The resemblance has its limits. Here pooling is about finding rational consensus between parties. But

according to the mainstream reading of Kuhn, in scientific revolutions parties do not have a recourse to a

common theoretical language, body of observational evidence, or methodological rules. Despite the differ-

ences, the analogy is helpful. I am here concerned with Kuhn’s taxonomic or conceptual incommesurability.

During periods of scientific revolution, existing concepts are replaced with new concepts that are at odds with

the old ones because they do not share the same “lexical taxonomy”, they cross-classify objects according to

different sets of kinds.

In order to illustrate the kind of conceptual tool developed here, I will build on the Priestley-Lavoisier

debate around Phlogiston Theory. I will present and formalize the debate in Bayesian terms, and articulate

a kind of consensual resolution of the disagreement that does not pretend to be historically accurate of what

happened, but that I hope the reader finds sensible.

Priestley advocated the Phlogiston Theory, which attempted to give an account of combustion. Its

basic explanatory hypothesis (H) was that there is a substance which is emitted in combustion, namely

phlogiston. For example, when a metal is heated, phlogiston is emitted, and the calx of the metal is obtained.

Furthermore, the process is sometimes reversible. By heating the red calx of mercury, Priestley found that

he could obtain the metal mercury, and a new kind of air which he called “dephlogisticated air”. In contrast,

Lavoisier’s theory of combustion is akin to our modern theory.

Phlogiston Theory (PT) Modern Theory (MT)
Input Output Input Output

Metal + air

+ heat

Calx of metal +

phlogisticated air

Metal + air

+ heat

Metal oxide + air

which is poor in oxygen
Red calx (oxide)

of mercury + heat

Mercury +

dephlogisticated air

Oxide of mercury

+ heat
Mercury + oxygen

It seems easy to attain consensus. After all, identifying “dephlogisticated air” with “oxygen” (and “calx of

metal” with “metal oxide”) seems to provide a good mapping for these experiments. But not all experimental

outcomes of dephlogisticated air correspond to experimental outcomes of oxygen, albeit some do. Phlogiston

theory departs from the false presupposition (H) that there is a unique substance which is always emitted in

combustion, and this premise contaminates its terminology and carving of the logical space. This is Kuhn’s

and Feyerabend’s point, that terms of phlogiston theory are theory-laden: “phlogiston” refers to that which

is emitted in all cases of combustion. For Lavoisier, H is false and therefore “phlogiston” fails to refer.
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Although they recognize that Phlogiston Theory is incorrect, historians of science might want to explain

it’s success and acknowledge some of their truths. But such a revolutionary theory change from Phlogiston

Theory to Modern Theory seems to leave no room for continuity or consensus. Kitcher’s [24] analysis of

this case can save us here. Kitcher explains how Priestley’s use of “dephlogisticated air” is theory-laden.

Priestley’s early utterances of the expression, driven by the hypothesis H, correspond to “the substance

obtained by removing from air the substance which is emitted in combustion”. Those token expressions of

“dephlogisticated air” corresponded to a set of referents different from posterior token expressions. Some

of the later utterances, after his isolation yet misidentification of oxygen through the heating of a red calx

(oxide) of mercury, correspond to “the gas obtained by heating the red calx of mercury”. Hence those tokens

of “dephlogisticated air” refer to oxygen. Lavoisier found a way to interpret the different tokens Priestley

used, and therefore carve the space in a more refined way. Furthermore, in so far as Lavoisier et al. used the

term “oxygen” to refer to those tokens of “dephlogisticated air”, there was room for communication between

theoretical rivals.

2.2 Representing the Debate and Finding Consensus

The problem of theory change is being reconceptualized here as one of radical disagreement. Two tasks remain

in this introduction: to represent this case in the language of Bayesianism, and to articulate a resolution on

the basis of consensus as common ground.

From the perspective of a well informed historian, Priestley and Lavoisier came to the table with different

probabilistic attitudes pP ,pL and algebras of propositions AP ,AL. In our example, driven by hypothesis H,

Priestley can be reconstructed as partitioning his event space so that there is an event P that represents the

proposition that the output of the experiment includes phlogisticated air; P “ twi : wi s.t. the experiment

results in the release of phlogiston into the airu. After heating of a red calx (oxide) of mercury, Priestley is

represented as discovering a gas that had a great capacity for absorbing phlogiston, and called it “dephlo-

gisticated air”; DP “ twi : wi s.t. the experiment results in the removal of phlogiston from the airu. What

matters is that propositions and events like P and DP were at the core of phlogiston theory. As such, both

P and DP are taken to be basic, maximally specific, propositions in AP .2

The difference, from our modeler’s perspective, is that Lavoisier’s logical carving AL was more refined.

Where Priestley saw a gas without phlogiston, Lavoisier sometimes saw oxygen, but not always. Lavoisier

understood that “dephlogisticated air” was a misnomer. The proposition DP includes instances of oxygen

release but also others. The proposition O that the outcome of the experiment is the release of oxygen

entails but it is not entailed by DP, O Ă DP . Given H, the absence of phlogiston in the air was at

the core of the theory and DP was basic. By rejecting H, Lavoisier could refine the space. In other

words, let DP “ tw1, w2u P AP . If tw1u corresponds to an instance with oxygen and tw2u without, then

tw1u, tw2u R AP . For Lavoisier, tw1u, tw2u P AL, so that at least with respect to this issue he made more

relevant distinctions.

One initial way of finding consensus would be for our modeler to represent consensus as the more refined

logical space AL on the grounds that logical refinement constitutes an epistemic improvement. But it is

2A proposition A is basic or atomic in the algebra if it is non-empty and there is no stronger (non-empty) proposition A1 Ă A
in the algebra. This implies that if both P and DP are basic, their intersection is empty and therefore you can not have the
both be true at the same time.
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Phlogiston Theory Modern Theory Consensus
AP AL AP _AL

DP “ tw1, w2u P AP tw1, w2u P AL tw1, w2u P AP _AL

O “ tw1u R AP tw1u P AL tw1u P AP _AL

not in general true that a more refined space is an indication of epistemic improvement; including irrele-

vant distinctions can make a space more convoluted without any epistemic gain. Also, in many interesting

circumstances it is not the case that one space is a refinement of the other.

In other words, Priestley may rationally reject Lavoisier’s logical space as the right one on the basis that

it is more refined. What would then be a reasonable consensus? The adoption of an initial common ground

with further investigation in the future. This means retreating to a position that is compatible with all

of the individual positions, but that still contains the shared agreement. In the case of algebras, there is

a formalism that captures this: the join, AL _ AP , the coarsest algebra that is finer than those two. In

detail, its the algebra A˚ such that (i) AL Ď A˚ and AP Ď A˚, and (ii) for any A ˚ with AL Ď A ˚ and

AP Ď A ˚, A˚ Ď A ˚. Since AP Ă AL, we have that AL _ AP “ AL, so Priestley might be convinced to

accept Lavoisier’s carving as an initial space, not because it is more refined, but because it constitutes a fair,

non question begging, starting point.

The rest of the essay will be devoted to developing and generalizing this notion of consensus for all

the relevant cases. Although it is clear that this is not how Lavoisier and Priestley actually resolved their

disagreements, it is felicitous that the scientific community adopted AL.

3 Finding a Logical Common Ground

3.1 Consensus as Common Ground

For each agent i P I, we, the modelers, consider an agenda Ai, the propositions an agent i P I regards

possible, and a probability function pi : Ai Ñ r0, 1s satisfying the Kolmogorov axioms. Propositions in Ai

are the objects of credal and plain belief attitudes. In the plain belief case, consensus as common ground

amounts to retaining all of the propositions that are accepted by all of the agents, and suspending judgment

on any other proposition. In the probabilistic case, to suspend judgment among some number of distributions

is to regard them permissible for the purposes of inference and decision making, and this is captured by a

set representation, as studied by Stewart and Ojea Quintana [43, 44].

There is an important difference between the case of radical disagreement and that of probabilistic (or

for that matter, full belief) disagreement. In the latter, there is agreement on which are the objects of the

epistemic attitudes. In other words, there is agreement on which are the relevant propositions of concern,

but there might be disagreement about what credal or full belief judgment to have on them. In contrast,

in the case of radical disagreement, there is no consensus on what is the relevant set of propositions - i.e.

the objects of epistemic attitudes. Or more seriously, there might not be agreement about the identity of

propositions across logical spaces, following Mahtani [32].

Part of Kitcher’s [24] contribution in the debate about theory change was to point out that (provided we

make certain assumptions about the references of terms) we can offer some continuity in cases of scientific

revolution [Kuhn [26, 27], Feyerabend [14]]. A well-informed modeler or historian of science might want

to explain the success of phlogiston theory, acknowledge some of their truths, and regard its advocates as

rational; even in light of the fact that the theory proved to be false. The situation in our case is similar. In

order to provide a consensus view we assume that a well-informed modeler can identify propositions across
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logical spaces; that some propositions share the same truth-conditions.

This assumption is somewhat warranted by the idea that our arbiter is trying to model rational consensus

as common ground. Without assuming any identities of possibilities across parties there is not enough room

for any form of comparison, much less finding common ground. Arguably, there can be cases like that.3 That

does not preclude other forms of consensus to be attainable without that assumption. Consensus can be

reached through revolution, conversion, voting, bargaining, or some other psychological, institutional, social,

or political process. But that is not finding a common ground, and in many cases it might not be rational

consensus. It is on the basis of the recognition of identities across spaces that finding common ground is at

all possible. This is the main reason the present proposal is that of a third person well-informed modeler

trying to find consensus, in contrast first person individuals finding consensus among themselves. Individuals

might fail or be unwilling to cross-identify propositions.

Nevertheless, in most of the scenarios we care about, individual agents agree on the meaning of at least

some propositions. Suppose two agents share a propositional variable Qj and agree on its truth conditions.

They can begin by agreeing on the same set of possible worlds to assign a reference to it. In our semi-formal

example of the Priestley-Lavoisier debate, and in so far as Lavoisier was more refined than Priestley, they

then shared the meaning of a significant part of the terminology (but not all). In natural languages this also

occurs frequently. Sentences involving general nouns like ‘X is a tenant’ can be recognized as having the

same truth-conditions, although different agents might be aware of different ways in which it can be made

true. In other words, one agent could point to a way the world might be, which the other agent was not

aware of, and they would both agree whether that possibility makes the proposition true or not.

This speaks to the connection between the current third person account of consensus with the first person

accounts of awareness. In so far as there is agreement about the meaning of certain propositions between

parties, the approach presented here can be proved useful. Furthermore, a well-informed modeler can be

viewed as an arbiter or judge mediating disagreement between parties. By first retreating to a position that

is non-question begging, this ideal arbiter can later settle the dispute through inquiry. Since the common

ground is not at stake, and if the rules of inquiry are agreed upon parties, the disagreement can be in

principle resolved. In cases of awareness growth, a single individual becomes aware of new possibilities, and

the guiding question is whether there are rational rules for incorporating them to their current logical space.

In some cases, but arguably not all, this process can be represented as a disagreement between temporal slices

of a single individual. In some other cases, as a disagreement between alternative updates after awareness

growth. In addition, a well-informed and neutral (third person) arbiter serves as a regulative idea for a

rational first person individual. In the face of disagreement with someone else, or in general confronted with

an alternative carving of the logical space, our agent can ask themselves what would an ideal neutral arbiter

do. The thought of having an ideal neutral arbiter working as a regulative concept famously appears in

Adam Smith’s [40] notion of an impartial spectator, although in this case it concerns the appropriateness of

actions and behaviors, and not what is the relevant logical carving.

3.2 Joins as Common Ground

Let us assume then that we are given a set of agents each with their respective language Li, corresponding

to their respective algebras Ai in a way that some of the terminology shared in the languages has the same

truth-conditions. Furthermore, each agent has a subjective probability distribution pi on their algebra Ai,

but that will be the subject of the next section. The guiding goal in this section is to provide a common

3Cases of true Kuhnian revolution where there are no identities across the parties logical carving.
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ground logical space.

The suggestion here is to take the join of the Ai. The join of a set of algebras is the coarsest algebra

that is finer than all of the individual ones in the set.4 By taking the join as the shared event space agents

are precisely following the heuristic defended here: taking as common ground the coarsest space that is

compatible with everyone’s original position. Taking any reduced algebra would imply excluding events

deemed possible by some agent. Taking any finer algebra would be rationally unjustified.

The analogy with full belief is helpful here. Following the semantic interpretation of Belief Revision Logic

AGM, the belief state of an agent can be identified with the (logical clousure) of the strongest proposition

P in the algebra that is believed by that agent. Given two agents with belief states P1 and P2, finding a

common ground means contracting to a state P˚ that is weaker than P1 and P2; this is (i) P1 Ď P˚ and

P2 Ď P˚. But ideally, P˚ should also be as strong as possible to preserve the largest common ground, hence

for any P˚ satisfying (i) it should be the case that P˚ Ď P˚. This is precisely the join. In this analogy,

having a stand about which propositions are true is akin to having a stand about which event space is the

relevant, they are both intentional attitudes about how the world is. Before, a belief state P˚ was stronger

than another belief state P˚ just in case P˚ Ď P˚. In our jargon here, an algebra A˚ is stronger than another

algebra A ˚ just in case A˚ Ď A ˚. Moving from A˚ to A ˚ is an epistemic weakening, since it involves

bringing into consideration more possibilities as relevant. Finally, finding a common ground is analogous in

both cases: fall back to the strongest position compatible with the parties.

Furthermore, the proposed solution aligns with the scientific consensus that resulted from the Priestley-

Lavoisier dispute. By rejecting the hypothesis phlogiston is released in combustion, Lavoisier studied the

properties of the gas resulting from heating a red calx of (oxide of) mercury as properties of a new substance,

oxygen. Priestley studied them as properties of a gas depleted from phlogiston and started with a coarser

algebra. But then the join AP _ AL is just AL and the proposed common ground is precisely Lavoisier’s

carving. In this we follow Steele & Stefánsson [41] and Mahtani [32], where awareness growth by refinement

corresponds to comparing two algebras, one more refined than the other. But comparing one algebra to a

more refined one is just one form algebraic disagreement, it is also possible for i to be more refined in some

respects, but more coarse in others.5

Nothing precludes the alternative that all of the parties involved considered possibilities that none of the

other did. For example, for two agents A and B we could reasonably have Ω˚ “ ΩA “ ΩB “ tw1, w2, w3, w4u,

AA is generated by ttw1u, tw2u, tw3, w4uu, while AB is generated by ttw1, w2u, tw3u, tw4uu. Here A distin-

guishes between tw1u and tw2u while B does not, and conversely for tw3u and tw4u. Importantly, the

consensus position acknowledges as doxastically possible events that no one considered possible before.

AA _AB “ A ˚ “ PpΩ˚q, and in particular tw2, w3u P A ˚ but tw2, w3u R AA and tw2, w3u R AB .6 I take

this to be a positive feature of the proposal. It shows that seeking consensus in one of its weakest forms, as

common ground and at the outset of inquiry, already can lead to conceptual refinement and innovation.

4 Radical Pooling and Imprecision

Recall that in this setup a well informed modeler or historian of science is given a group of agents who

disagree radically (like Priestley and Lavoisier did), with each agent i having an event space ă Ai ą, and a

4This is the algebra A˚ such that (i) AL Ď A˚ and AP Ď A˚, and (ii) for any A ˚ with AL Ď A ˚ and AP Ď A ˚, A˚ Ď A ˚.
5Say Ω1 “ Ω2 “ tw1, w2, w3, w4u, while A1 “ σptH, tw1u, tw2u, tw3, w4uuq and A2 “ σptH, tw3u, tw4u, tw1, w2uuq.
6Notice that although the event tw2, w3u was not considered possible, some of the states (worlds) constituting the event were

considered by the agents. In the language introduced here, this amounts to partial radical disagreement, which is different from
full radical disagreement. The Priestley-Lavoisier debate illustrates the importance of the former.

7



distribution ă pi ą on that. The arbiter’s task is to aggregate or pool the information in those profiles in a

way that reflects the consensus as common ground. The aggregation procedure in the previous section dealt

with the σ-algebra of propositions ă Ai ą by taking the join. This section will deal with the probabilities

ă pi ą by using imprecise pooling, interpreted here as a form of rational consensus.

4.1 A case for imprecision

The moves so far were the following:

Ai A ˚
Shared Event Space

A ˚ “
Ž

i A
˚
i

How should the agent extend their subjective probability, originally defined over Ai to the new common

ground logical space A ˚?

The rest of this section will provide arguments for imprecision. I will show that imprecision is compatible

with principles of rationality that some argue can be appealed to in these types of cases: marginalization,

rigidity, reverse bayesianism, and divergence measures. The present account remains in principle neutral with

respect to the issue whether those constraints are rationally required. The purpose is to show how coherent

imprecision is with other principles.

The use of imprecise probabilities in the context of disagreement has well known downsides. For exam-

ple, as Elkin and Wheeler [12] explain, taking convex sets of probability functions may lead to failures of

probabilistic independence. Take probability functions p1 and p2 such that p1pA X Bq “ p1pAqp1pBq and

p2pAXBq “ p2pAqp2pBq. A convex combination p˚ “ αp1`p1´αqp2 with 0 ň α ň 1, might fail to preserve

independence: p˚pA X Bq ‰ p˚pAqp˚pBq. A defense against this objection was given in [43]. Furthermore,

the source of imprecision here is not due to pooling but due to awareness growth. Agents will extend their

probabilities to posterior algebras that are in general richer than the prior ones. As the discussion on rigidity

will reveal, in this case judgments of independence are preserved at this stage.

The proposal endorsed here will be to extend precise probabilities defined on Ai to sets of probabilities

defined on A ˚ by taking natural extensions. This is an old and familiar move in the Imprecise Pooling

literature. This is usually done in the more general language of gambles and previsions. Cooman & Troffaes

[5] present a helpful introduction, plus some interesting results on prevision aggregation. Troffaes & Cooman’s

book [46] develops extensively the theory of (lower) previsions. It is well known since de Finetti that in general

(except degenerate cases) a linear prevision (i.e. a precise probability) on a strict subset of the set of all

gambles has no unique natural extension to the larger set: natural extensions are generally imprecise.

The contribution for the rest of the section is to motivate the use of natural extensions on the basis

of principles that have been endorsed in the unawareness literature, bridging imprecision and unawareness.

Furthermore, natural extensions are usually interpreted as the most conservative correction of the original

prevision to a coherent one over the larger set of gambles. This suits well the dialectic endorsed here; when

expanding to new algebras agents should be as conservative as they can while still trying to accommodate

for the new information.
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4.2 Marginalization leads to imprecision

Given three σ-algebras A1 Ď A2 Ď A3 a probability function p defined over A2, the marginalization of p on

A1 (pæA1) is the unique p˚ defined over A1 such that for all elements E P A1, ppEq “ p˚pEq.
7 Conversely,

we can look at all of the probabilities p˚ defined on A3 such that restricted or marginalized to A2 is equal

to p, i.e. p˚æA2
“ p. That is what we do here.

In our setup, each probability measure pi is defined over Ai, and the task is to extend that measure to

A ˚. We will use imprecise probabilities. In particular, there are several admissible extensions of pi to A ˚

and there is no reason for i to prefer one over the other. In our notation, p˚i refers to distributions defined

over A ˚, the richer algebra.

Pi “ tp˚i : p˚i æAi “ piu

So Pi is the set of all probability measures that extend pi - i.e. all the p˚i defined over A ˚ such that

restricted to Ai gives back pi. More precisely: p˚i æAi “ pi if and only if for each H P Ai, p
˚
i pHq “ pipHq.

8

Proposition 1. Pi is convex for all i.

New events will have non-null probability weight only if they have old events as subsets. Completely new

events will have null probabilistic weight. In the imagined scenario, Priestley would assign zero probability

to Lavoisier’s alleged observation.

4.3 Rigidity (or Reverse Bayesianism) and Conservatism lead to Imprecision

A standard, yet contested, principle of Bayesian epistemology is rigidity : conditional probabilities are kept

fixed throughout updating. Let pp¨q be defined over some algebra A of events be a representation of some

agent’s (coherent) credal state. Suppose now the agent learns an event E and updates their credal state to

qp¨q “ pp¨|Eq according to Bayesian standards. For all events H P A we have:

• Rigidity: qpH|Eq “ ppH|E X Eq “ ppH|Eq

Richard Jeffrey [21] famously argued against this form of rigidity. I do not intend to discuss this form of

rigidity, but one relevant for the radical disagreement case.

Intuitions are not clear on whether rigidity is an acceptable rationality constraints in the context of

awareness growth. Nevertheless, there are defenses of rigidity-like principles in the literature, in particular

in Bradley [2] and Steele and Stefánsson [41]. As explained before, although the approach defended here

sympathizes with rigidity, the central purpose is to show that it is compatible with it.

The idea behind this principle is that we should extend our relational attitudes to the new set in such

a way as to conserve all prior relational credences. Becoming aware of the new events should not affect the

relative credibility of previously considered events. For all E,H P Ai with pipEq ‰ 0 ‰ p˚i pEq:

• Strong Radical Rigidity [SRR]: p˚i pH|Eq “ pipH|Eq

SRR can arguably be regarded as too strong of a requirement. If so, consider the principle that demands

that the strengthened conditional probabilities of old events given the old set of possibilities should be kept

the same. Namely, for all H P Ai:

7p˚ need not be a probability function.
8In general the marginalization operation p˚i æAi

is defined only when Ai is a subalgebra of A ˚, but this needs not to be
the case here and that is why the definition is necessary.
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• Weak Radical Rigidity [WRR]: p˚i pH|Ωiq “ pipH|Ωiq “ pipHq

The following observation holds trivially, provided that p˚i pΩiq ‰ 0.

Proposition 2. Strong Radical Rigidity and Weak Radical Rigidity are equivalent.

Related with rigidity is the principle of Reverse Bayesianism introduced by Karni and Vierø [22, 23]. More

precisely, they extend the Savage framework by introducing extra axioms regulating awareness and they show

that the collection of those axioms admit an expected utility representation in which the probability at hand

obeys reverse bayesianism. A natural way to translate such property from the Savage framework to the

present is the following:

• Reverse Bayesianism [RB]: For all A,B P Ai non-null with respect to pi and p˚i :

pipAq

pipBq
“

p˚i pAq

p˚i pBq

The property states that the likelihood ratios of events in the original space remains intact after the

expansion to the new space. Importantly, Karni and Vierø [22, 23] results show that the probabilistic

representation has the property for non-null [non zero probability] events in both pi and p˚i and for both A

and B (not just the denominator).

Proposition 3. Strong Radical Rigidity implies Reverse Bayesianism.

Proposition 4. Reverse Bayesianism does not imply Strong Radical Rigidity in general.

Proposition 5. Reverse Bayesianism implies Strong Radical Rigidity, for all E,H,E X H P Ai non-null

with respect to pi and p˚i .

Proposition 6. Unconstrained Reverse Bayesianism9 is equivalent to Strong Radical Rigidity.

Hence for our purposes here, accounts compatible with rigidity will also be compatible with Reverse

Bayesianism.

Several authors, in particular Steele and Stefánsson [42, 41] argue that Reverse Bayesianism is not an

acceptable general principle for awareness change. In particular, they offer counter examples in which the

principle fails with common sense intuitions. These objections are fair for RB as a general principle, but

are not particularly harmful to the argument made here. First, I am not arguing that RB is a good general

principle for radical revisions, but a reasonable one in the context of opinion pooling. Second, as with

marginalization, the argument is meant to show that the use of imprecise probabilities is compatible with RB

[SRR, WRR].10

Going back to imprecision, it is easy to observe that all the p˚i P Pi “ tp˚i : p˚i æAi
“ piu satisfy SRR,11

yet the set of all p˚i satisfying SRR is strictly larger than Pi.12 The following condition suffices to make the

two sets coextentional.

9This means generalizing RB so that only the denominator is required to be non-null.
10Yet, if only marginalization, RB, SRR, WRR and divergence measures are required, then imprecision will be required too.

11If p˚i P Pi, then for all H P Ai, p
˚
i pHq “ pipHq. Hence, p˚i pH|Eq “

p˚i pHXEq

p˚i pEq
“

pipHXEq
pipEq

“ pipH|Eq.

12Let Ωi “ tw1, w2u, Ai “ PpΩiq, and pipw1q “
1
2

. On the other hand, let Ω˚ “ tw1, w2, w3u, A ˚ “ PpΩ˚q, and

p˚i pw1q “ p˚i pw2q “ p˚i pw3q “
1
3

. Then p˚i satisfies SRR but p˚i R Pi.
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• Radical Conservatism: p˚i pΩiq “ pipΩiq “ 1.

Proposition 7. The set of all p˚i defined over A ˚ satisfying SRR [equivalently, unconstrained RB] and

Radical Conservatism is just Pi “ tp˚i : p˚i æAi “ piu.

Radical Conservatism requires that outcomes originally inaccessible to the agent will get null probability,

which requires some justification in this context.

First, this is not yet the output of a pooling function. Our modeler is not taking into account the credences

of the agents but only their algebras. No (probabilistically representable) evidence in support of the new

possibilities is being considered, and probabilistic consensus is not being sought. This will be done at the

next stage.

Second, the guiding notion of consensus is one in which agents minimally weaken their credal positions

so as to accommodate those of other agents. But an agent i did not originally acknowledged all the w P Ω˚

but w R Ωi as relevant doxastic possibilities, so there seems to be no reason to give them any probabilistic

weight. Also, as pointed before, giving them positive probabilistic weight implies reducing the probabilistic

weight of doxastic possibilities they originally considered relevant; which is not a conservative operation.

4.4 Divergence Measures lead to Imprecision

Another way of understanding the question on how to extend pi from Ai to A ˚ is by taking pi to be a partial

credence function over A ˚, one in which there are no values assigned for some elements of the algebra. A

partial function can be considered incoherent if it assigns values to some elements but not their unions,

intersections or complements.13 Hence the question of how to structurally strengthen pi to A ˚ is akin to

the issue of how to fix incoherent credences, a topic extensively developed by Pettigrew [37] and Predd et al

[38]. Their solution involves using divergence measures.

The argument here is not that using divergence is a rational requirement, but that imprecision is com-

patible with it. In most cases divergence measures, or more generally different forms of loss functions, are

warranted on the basis that we are trying to better estimate some value like truth (in the accuracy first

literature) or some target function (in function approximation in supervised and unsupervised learning).

The problem here is not of estimation but rather of coherence [37] and conservatism: among the coherent

distributions over the richer algebra, which is the set of closest to the original distribution over the prior

algebra.

In this section, P is the set of credence functions defined on A (rather than A ˚).14 A divergence is a

function DA : Pˆ PÑ r0,8s such that for all credences p,p1 P P, (i) DA pp,pq “ 0, and (ii) DA pp,p
1q ą 0

if p ‰ p1. In general, neither symmetry nor the satisfaction of triangle inequality are required. The following

are two classical examples:

Squared Euclidean Distance [SED]

SEDA pp,p
1q “

ÿ

EPA

rppEq ´ p1pEqs2

13This is related yet different to coherence as sure loss avoidance.
14Notice that nothing in the definition requires the elements of P to be probability functions, just that they assign values in

[0,1] to the elements of A

11



Generalized Kullback-Leibler [GKL]

GKLA pp,p
1q “

ÿ

EPA

„

ppEqlog

ˆ

ppEq

p1pEq

˙

´ ppEq ` p1pEq



Divergence measures are generally used under the methodological assumption of minimal mutilation,

which states that any shift from a prior to a posterior credal states should accommodate the posterior

condition by minimally changing the prior. For example, Bayesian conditionalization satisfies the minimal

mutilation principle according to GKL: pp¨|Eq “ p1 minimizes GKLA pp,p
1q on the condition that the p1 is

a probability function (i.e. coherent credal functions) that assigns value 1 to E. Similarly, Kullback-Leibler

divergence generalizes Jeffrey conditionalization [7]. GKL is also a generalization of Jaynes’ Maximum

Entropy formalism [48].

To “fix” pi amounts then to finding the (set of) coherent p˚i defined over A ˚ that minimizes some

appropriate divergence measure. We can avoid the question on whether to use SED or GKL by looking at a

generalization of both:

Additive Bregman Divergence [ABD]

Suppose φ : r0, 1s Ñ R is a strictly convex function that is twice differentiable on (0,1) with a continuous

second derivative. Suppose D : Pˆ PÑ r0,8s. Then D is the additive Bregman divergence generated by φ

if, for any p,p1 P P,

DA pp,p
1q “

ÿ

EPA

rφpppEqq ´ φpp1pEqq ´ φ1pp1pEqqpppEq ´ p1pEqqs

SED is the ABD generated by φpxq “ x2, and GKL is the ABD generated by φpxq “ xlogx ´ x. The

additive Bregman divergence can also be justified on accuracy-first grounds. Predd et al [38] show that if p

is an incoherent credence function, then the coherent credence function p1 that minimizes ABD with respect

to it is more accurate than p at all possible worlds. Therefore “fixing” incoherent credence functions using

ABD increases accuracy. The following observation is important for our purposes:

Proposition 8. For all p˚i coherent credence functions defined over A ˚:

p˚i P Pi “ tp˚i : p˚i æAi
“ piu iff DAi

ppi,p
˚
i q “ 0 “ DAi

pp˚i ,piq

This section explored the structural strengthening of pi to A ˚ by extending it to Pi “ tp˚i : p˚i æAi
“ piu.

This was shown to be compatible with marginalization, the principle of minimal mutilation expressed by

divergence measures, and some conservative constrains involving rigidity and reverse bayesianism. Any of

the p˚i P Pi will satisfy those principles. Furthermore, excluding any of the p˚i satisfying the conditions

would be arbitrary and unjustified. If we take any or all of those conditions to be exhaustive principles for

structural strengthening, then we would be required to adopt Pi “ tp˚i : p˚i æAi “ piu.

4.5 Extending imprecise sets of probability functions

The previous sections focused on extending probability measures pi defined over Ai to A ˚. But the reader

might endorse the view according to which subjective individual credal states should be represented by sets

12



of probability functions - in particular convex sets. So suppose we start with a convex set of probabilities Pi
representing agent i’s credences over Ai and we would like to extend it to A ˚. The proposed extension is:

Pi “ tp˚i : p˚i æAi
“ pi for some pi P Piu

The following proposition is helpful:

Proposition 9. Provided that Pi is convex, Pi is convex.

5 Imprecise Pooling

So far, each agent has a convex set of probability functions Pi defined over a common algebra A ˚. Say PpP q

is the power set of the set of all probability functions defined on an algebra A ˚. A generalized imprecise

pooling function is defined as:

F : pPpP qqn Ñ PpP q

Our goal in this section is to find the appropriate pooling function F to conclude the aggregation process:

Ai A ˚

pi Pi P˚

Shared Event Space

A ˚ “
Ž

i A
˚
i

Subjective Extension

Pi “ tp˚i : p˚i æAi
“ piu

Pooling

FpPiq

Defined OverDefined Over

The next section provides an introduction to pooling, enumerating some well know results and principles

adopted in the literature. Importantly, much of the literature assumes that the input of the pooling function

is a precise profile of probabilities. We here have imprecise inputs. The sections following will develop the

account for doing this, concluding with some generalized results.

5.1 Pooling Basics

Say P is the set of probability functions defined over a common algebra A . Formally, a precise pooling

method for a group of n individuals is a function:

F : Pn Ñ P

mapping profiles of probability functions for the n agents pp1, ...,pnq, to single probability functions F pp1, ...,pnq.

The probabilities are assigned to events, represented by a common algebra A defined over a shared sample

space Ω.

Various concrete pooling functions have been studied. Linear pooling functions may be the most common

and obvious proposal [45, 33, 28].

Linear Opinion Pools. F pp1, ...,pnq “
řn
i“1 wipi, where wi ě 0 and

řn
i“1 wi “ 1.
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Another proposal is to take a weighted geometric instead of a weighted arithmetic average of the n

probability functions [31, 1, 17].15

Geometric Opinion Pools. F pp1, ...,pnq “ c
śn
i“1 p

wi
i , where wi ě 0 and

řn
i“1 wi “ 1, and c “

1
ř

ω1PΩrp1pω
1qsw1 ¨¨¨rpnpω

1qswn is a normalization factor.16

A third, more recent proposal from Dietrich [8] is given by the following formula.

Multiplicative Opinion Pools. F pp1, ...,pnqpωq “ c
śn
i“0 pi, where p0 is a fixed “calibrating” probability

function, and c “ 1
ř

ω1PΩrp0pωqs¨rp1pω
1qs¨¨¨rpnpω

1qs
is a normalization factor.17

On the other hand, several principles have been suggested:

Strong Setwise Function Property (SSFP): There exists a function G : r0, 1sn Ñ r0, 1s such that, for

every event A, F pp1, ...,pnqpAq “ Gpp1pAq, ...,pnpAqq.

Weak Setwise Function Property (WSFP): There exists a function G : A ˆ r0, 1sn Ñ r0, 1s such that,

for every event A, F pp1, ...,pnqpAq “ GpA,p1pAq, ...,pnpAqq.

Zero Preservation Property (ZPP): For any event A, if pipAq “ 0 for i “ 1, ..., n, then F pp1, ...,pnqpAq

“ 0.

Marginalization Property (MP): Let A 1 be a sub-σ-algebra of A . For any A P A 1, F pp1, ...,pnqpAq “

F prp1æA 1s, ..., rpnæA 1sqpAq.

Probabilistic Irrelevance Preservation (IP): If pipA|Bq “ pipAq for i “ 1, ..., n, then

FBpp1, ...,pnqpA) “ F pp1, ...,pnqpAq.
18

Unanimity Preservation (UP): For all pP1, ...,Pnq P Pn, if Pi “ Pj for all i, j “ 1, ..., n, then FpP1, ...,Pnq “
Pi.

External Bayesianity (EB): For every profile pp1, ...,pnq in the domain of F and every likelihood function

λ such that ppλ, ...,pλnq remains in the domain of F , F ppλ1 , ...,p
λ
nq “ Fλpp1, ...,pnq.

19

There is a large literature justifying these principles, and studying the interaction between them and the

different forms of precise pooling. Surveys of the literature include Simon French’s [15], Genest and Zidek’s

[18], and Dietrich and List’s [9]. This is not the place to cover that material. The reason to invoke the

principles is that there are limitative results showing that the axioms can not be jointly satisfied by precise

pooling functions.

Theorem 1. [33, Theorem 3.3; 28, Theorem 6.7] Given that the algebra contains at least three disjoint

events, a pooling function satisfies SSFP iff it is a linear pooling function.

15An unweighted geometric pool of n numerical values is given by n
?
x1 ¨ ¨ ¨ xn “ x

1
n
1 ¨ ¨ ¨ x

1
n
n .

16The domain of geometric pooling operators is restricted to profiles of regular pmfs, i.e., those p such that ppωq ą 0 for all
ω P Ω. We denote the set of regular pmfs P 1 making the relevant domain P 1n.

17As with geometric pooling functions, the domain of multiplicative pooling functions will be restricted to P 1n.
18Here FBpp1, ...,pnq refers to updating the pool function F pp1, ...,pnq with the event B.
19The requirement is that updating the individual probabilities on a common likelihood function (as opposed to updating

on an event) λ and then pooling is the same as pooling and then updating the pool on that likelihood function. A likelihood
function, λ : Ω Ñ r0,8q, is intended to encode, given any ω P Ω, how expected some evidence is with the number λpωq. In
conditionalizing, λp¨q serves the same role as the conditional probability ppE|¨q in Bayes’ theorem.
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Theorem 2. [33, Corollary 3.4] Given that the algebra contains at least three disjoint events, F satisfies

WSFP and ZPP iff F is a linear pooling function.

McConway has shown that a pooling function has the WSFP iff it has the MP. So linear pooling functions

satisfy MP and ZPP.

Theorem 3. [16, p. 1104] The geometric pooling functions are externally Bayesian and preserve unanimity.

Part of the appeal of using imprecise probabilities, as shown by Stewart and Ojea Quintana [43], is that

they can jointly satisfy (an appropriate translation of) criteria that precise pooling cannot:

Theorem 4. [43, Propositions 2,3,5]

Convex IP pooling functions satisfy SWFP, WSFP, MP, ZPP, and unanimity preservation.

Convex IP pooling functions are externally Bayesian.

Convex IP pooling functions satisfy irrelevance preservation.20

The same strategy will be used in Section 5.3, when considering how to aggregate sets of precise probabilities.

5.2 Pooling Imprecise Probabilities

We can now move to our problem at hand. Now we are given a profile of sets of probabilities functions Pi
defined over a common algebra A ˚. This problem has been explored in the literature, but not particularly

in the current setting.

In an unpublished research note [36], Walley provides an account of information fusion and presents fifteen

criteria for the aggregation of opinions represented as sets of probabilities. The report is very hard to get,

but both Dubois et al. [10] and Seamus Bradley [3] provide a summary of it, together with general setup

for information fusion. None of them present the problem as one of finding consensus, and they are also not

focused on finding it in the context of radical disagreement. Furthermore, they are not in direct dialogue

with the literature on pooling and disagreement presented in the previous section. Nevertheless, and maybe

unsurprisingly, some of the criteria coincide with those in pooling; we will get into that in short. Walley

[36] comes up with a number of merging rules that result from the fifteen criteria. Some of them, the most

tractable ones in the pooling setting, are:

Proposal 1: FpP1, ...,Pnq “
Şn
i“1 Pi.

Proposal 2 FpP1, ...,Pnq “
Ťn
i“1 Pi.

Proposal 3 FpP1, ...,Pnq “ Hp
Ťn
i“1 Piq.21

Moral and del Sagrado [35] also consider postulates for merging credal sets inspired by Walley. Their

proposal is too involved to elaborate here, but two contrasting points are in place. First, their setup is one

of expert opinion merging, and they adopt Dempster-Shafer theory of evidence in order to weight each agent

according to their expertise. The approach here is one in which agents are all taken into account fairly and

equally, and not given different weights. The second point is that they consider postulates that will fail

here. For example, they postulate that if P˚ is the set of all probabilities over A ˚, then FpP1, ...,Pn,P˚q “
FpP1, ...,Pnq. The idea is that P˚ represents complete ignorance and therefore should be ignored in merging.

Walley [36] and Dubois et al. [10] consider versions of this principle. Proposals 2 and 3 clearly fail at this.

20This particular principles does require considering probabilistic irrelevance rather than probabilistic independence.
21HpAq here is the convex closure of A.
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In the present interpretation of the operator as one of consensus, even an ignorant (or possibly skeptical)

agent with credal state P˚ should be given a fair hearing. Taking unions (Proposal 2) ensures this. Taking

the convex set of unions (Proposal 3) might lead to greater imprecision, but this might be warranted if all

potential resolutions are to be preserved at the outset. The next few sections will be a defense of Proposals

2 and 3 on the basis of pooling axioms.

5.3 The Pooling Axioms Reformulated

As mentioned before, Walley [36] offered several criteria for aggregating imprecise probabilities, as do Moral

and del Sagrado [35] and Bradley [3]. We are here going to follow the pooling framework, and reformulate

the axioms presented in Section 5.1 for aggregating sets of probabilities:

Strong Setwise Function Property (SSFP): There exists a function G : Ppr0, 1sqn Ñ Ppr0, 1sq such

that for any A P A ˚, FpP1, ...,PnqpAq “ GpP1pAq, ...,PnpAqq.

Weak Setwise Function Property (WSFP): There exists a function G : A ˚ ˆPpr0, 1sqn Ñ Ppr0, 1sq

such that, for any A P A ˚, FpP1, ...,PnqpAq “ GpA,P1pAq, ...,PnpAqq.

Zero Preservation Property (ZPP): For anyA P A ˚, if PipAq “ t0u for all i “ 1, ..., n, then FpP1, ...,PnqpAq “
t0u.

Marginalization Property (MP): Let A 1˚ be a sub-σ-algebra of A ˚. For anyA P A 1˚, FpP1, ...,PnqpAq “
FprP1æA 1˚s, ..., rPnæA 1˚sqpAq.22

Irrelevance Preservation (IP): If ppA|Bq “ ppAq for all p P
Ťn
i“1 Pi, then

FpP1, ...,PnqpAq “ FBpP1, ...,PnqpAq.

Unanimity Preservation (UP): For all pP1, ...,Pnq P Pn, if Pi “ Pj for all i, j “ 1, ..., n, then FpP1, ...,Pnq “
Pi.

External Bayesianity (EB): For every profile pP1, ...,Pnq in the domain of F and every likelihood function

λ such that pPλ1 , ...,Pλnq remains in the domain of F , FpPλ1 , ...,Pλnq “ FλpP1, ...,Pnq.23

Some of the principles considered by Walley [36] coincide, most notably commutativity with updating

(External Bayesianity here). Some other are not explicit but still hold for our cases, like Symmetry (the order

of the input does not affect the output). And some others are in Walley but not in pooling or vice versa.

The argument for Proposals 2 and 3 will be that they both satisfy all of the pooling axioms reformulated.

5.4 Some Results

Most of these results are extensions of the ones present in Stewart and Ojea Quintana [43].

Proposition 10. Let F : pPpP qqn Ñ PpP q be an IP pooling function (not necessarily convex). F satisfies

WSFP iff F satisfies MP.

Proposition 11. Convex IP pooling functions (Proposal 3) satisfy SSFP, WSFP, MP, ZPP, and unanimity

preservation.

22Here rPiæA 1˚ s “ trpiæA 1˚ s : pi P Piu.
23Here Pλi “ tp

λ
i : pi P Piu.
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Lemma 1. [Cf. 29, 19] Convexity is preserved under updating on a likelihood function, i.e., FλpP1, ...,Pnq
is convex.

Proposition 12. Convex IP pooling functions (Proposal 3) are externally Bayesian.

Proposition 13. Convex IP pooling functions (Proposal 3) satisfy irrelevance preservation.

Proposition 14. Let FpP1, ...,Pnq “
Ťn
i“1 Pi (Proposal 2). Then, F satisfies SSFP, WSFP, ZPP, MP,

unanimity preservation, external Bayesianity, and confirmational irrelevance preservation.24

It is trivial to observe that Proposal 1 fails to satisfy some of the axioms.

The question of how to aggregate sets of probabilities in general is still open in the literature. There

are open problems about the interpretation of the operation and about which are the adequate axioms or

principles for it. The strategy in this section was to defend Proposals 2 and 3 on the basis that they satisfy

reasonable criteria for pooling, and an interpretation of pooling in terms of consensus as common ground.

Taking unions and convex hulls of unions represents taking the strongest position compatible with all of the

individual ones.

6 Conclusion

The general procedure can be visualized in the following diagram:

Ai A ˚

pi Pi P˚

Shared Event Space

A ˚ “
Ž

i A
˚
i

Subjective Extension

Pi “ tp˚i : p˚i æAi “ piu

Pooling
Ťn
i“1 Pi

Defined OverDefined Over

The nature of this essay is programmatic. It is focused in assessing a form of disagreement that has

been neglected in the literature, disagreement about which is the relevant logical space of possibilities. The

position defended here is that pooling can be interpreted as a technical and philosophical characterization of

a form of consensus, namely consensus as common ground at the outset of inquiry.

This view was exemplified with the Priestley and Lavoisier debate in Section 2. Section 3 presents the

view of consensus as common ground in detail, acknowledges certain assumptions, justifies the third person

perspective, and argues for taking the join of the algebras as the logical pool. Section 4 argues that (i)

marginalization, (ii) rigidity and reverse bayesianism, and (iii) divergence lead to the adoption of imprecise

probabilities when agents expand their probabilistic judgments to larger algebras. The previous section

extends results from previous work by Stewart and Ojea Quintana [43, 44] to show that pooling sets of

imprecise probabilities can satisfy important pooling axioms.

24The proof of this proposition is straightforward and so is omitted here. Also, Proposal 2 satisfies a stronger ver-
sion of irrelevance preservation, stochastic preservation: If ppA X Bq “ ppAqppBq, for all p P

Ťn
i“1 Pi, then, for all

p P FpP1, ...,Pnq, ppAXBq “ ppAqppBq.
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As explained in Section 3, the proposal assumed the perspective of a third person well-informed modeler

that was capable of identifying propositions and their truth conditions across different logical spaces. As

discussed there, this is a necessary conditions in order to attain consensus of the form we are interested here.

Assumptions of this form, discovered by Mahtani [32], are still being discussed in the literature and may have

further philosophical consequences.

It is important to remark that taking consensus as common ground is not the only solution to the problem,

but it is a sound one. On the one hand, there might be other formal approaches. For example, Cooman &

Troffaes [5] consider different (possibly incompatible) sources of information about independent variables and

propose an aggregation method considering product algebras and probabilistic (lower previsions) extensions

to them. On the other hand, there might be other philosophical approaches, by giving another interpretation

to the aggregation process. One might think, for example, that an agent that has a prior defined over a more

refined event or sample space has some kind of epistemic priority over a coarser (less “sophisticated”) agent.

Conversely, an expert’s algebra may be coarser because it removed irrelevant distinctions.

The Priestley and Lavoisier debate served as a motivating example of the kind of disagreements that

can be found in science, or inquiry in general. I argued that some cases of conceptual incommensurability

can be modeled as a disagreement about what are the relevant sample and event spaces, what are the best

natural joints to carve. But even in the face of such discrepancy, some form of consensus can be defined.

At the outset, disagreements about what variables are relevant for explanation should begin by giving a fair

treatment to all the possibilities. During inquiry, some of those possibilities may be discarded. But a pooling

function cannot be expected to give an armchair account of the outcome of inquiry. In order to resolve radical

disagreement rationally agents need start the conversation by taking others’ world views as possible.
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A Proofs

Proof. Proposition 1
Suppose p1,p2 P Pi. I want to show that for α P r0, 1s, p˚ “ α.p1 ` p1´ αq.p2 P Pi.
It is enough to show that p˚æAi

“ pi. Given any E P Ai, p˚pEq “ α.p1pEq ` p1 ´ αq.p2pEq “
α.pipEq ` p1´ αq.pipEq “ pipEq.

Proof. Proposition 2
SRR entails WRR tivially, since Ωi P Ai and pipΩiq “ 1. WRR and the definition of conditional probabil-

ities secure that for all E,H P Ai, pipH|Eq “
pipHXEq
pipEq

“
pipHXE|Ωiq

pipE|Ωiq
“

p˚i pHXE|Ωiq

p˚i pE|Ωiq
“

p˚i pHXEXΩiq{p
˚
i pΩiq

p˚i pEXΩiq{p
˚
i pΩiq

“

p˚i pHXEXΩiq

p˚i pEXΩiq
“

p˚i pHXEq

p˚i pEq
“ p˚i pH|Eq.

Proof. Proposition 3
Since both A and B are non-null with respect to pi and p˚i , pipA|Bq,pipB|Aq,p

˚
i pA|Bq and p˚i pB|Aq are

all well defined. Furtherm Suppose that SRR is true so that pipA|Bq “ p˚i pA|Bq and pipB|Aq “ p˚i pB|Aq.
SRR also ensures that ppAXBq ‰ 0 ‰ p˚pAXBq or ppAXBq “ 0 “ p˚pAXBq.
Suppose ppAXBq ‰ 0 ‰ p˚pAXBq, then pipA|Bq,pipB|Aq,p

˚
i pA|Bq and p˚i pB|Aq are all non-null. The

argument is then: pipBXAq.p
˚
i pAXBq “ pipAXBq.p

˚
i pBXAq iff (by definition of conditional probability)

ppipAq.pipB|Aqq.pp
˚
i pBq.p

˚
i pA|Bqq “ ppipBq.pipA|Bqq.pp

˚
i pAq.p

˚
i pB|Aqq iff (using the identities provided by

SRR and non-nullity) pipAq.p
˚
i pBq “ pipBq.p

˚
i pAq iff pipAq

pipBq
“

p˚i pAq

p˚i pBq
.

Now assume ppA X Bq “ 0 “ p˚pA X Bq. Classically, ppA Y Bq “ ppAq ` ppBq ´ ppA X Bq. Using the
assumption we get ppAYBq “ ppAq`ppBq and similarly p˚pAYBq “ p˚pAq`p˚pBq. By SRR ppA|AYBq “

p˚pA|A Y Bq. So ppAq
ppAq`ppBq “

p˚pAq
p˚pAq`p˚pBq . Hence, after some basic algebra, pipAq.p

˚
i pBq “ p˚i pAq.pipBq,

which is all we need.

Proof. Proposition 4
Assume RB holds for A,B P Ai non-null with respect to pi and p˚i [i.e. pipAq ‰ 0 ‰ pipBq and

p˚i pAq ‰ 0 ‰ p˚i pBq], but that there is H with H X E null in pi but not in p˚i (or viceversa). Then
p˚i pH|Eq ‰ pipH|Eq and SRR fails.

Proof. Proposition 5
This follows easily by taking A “ E XH and B “ E. Notice that A “ E XH needs to be non-null on

both credences for this argument to work.

Proof. Proposition 6
Suppose we generalize RB so that only the denominator is required to be non-null.
On the one hand, taking A “ E XH and B “ E would do the trick to show RB implies SRR.
On the other hand, assume SRR and suppose for contradiction that unconstrained RB does not hold for

A,B P A : pipAq
pipBq

‰
p˚i pAq

p˚i pBq
. Clearly, it can’t be the case that ppAq “ 0 “ p˚pAq. Alternatively, consider the

case where ppAq “ 0 but p˚pAq ‰ 0. Using WRR [equivalent to SRR] we have that 0 “ ppAq “ ppA|Ωq “

p˚pA|Ωq “ p˚pAq
p˚pΩq ‰ 0. So we again get a contradiction, and the same would hold in the case where ppAq ‰ 0

but p˚pAq “ 0. The fourth and final case in the one in which ppAq ‰ 0 ‰ p˚pAq; but this is just constrained
RB which was shown to be implied by SRR in Proposition 4.

Proof. Proposition 7
Note 12 showed that the p˚i P Pi satisfy SRR, and they trivially satisfy Structural Conservatism. Suppose

p˚i satisfies SRR and Structural Conservatism. Let H P Ai (so H Ď Ωi) and consider p˚i pHq. By Structural
Conservatism p˚i pHq “ p˚i pH|Ωiq. By SRR and Observation 4, p˚i satisfies WRR and therefore p˚i pH|Ωiq “
pipHq.
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Proof. Proposition 8
The observation follows from the fact that ABD is a divergence measure as defined before. If p˚i P Pi

then for all E P Ai, p
˚
i pEq “ pipEq, and hence each element of the summation will be null. On the other

hand, if p˚i R Pi, then there is E P Ai such that p˚i pEq ‰ pipEq. I will rely on the well known fact that φ is
strictly convex if and only if @x ‰ y P r0, 1s, φpxq ą φpyq ` φ1pyqpx´ yq. This implies that for any E P Ai, if
p˚i pEq ‰ pipEq, then φpppEqq ´ φpp˚pEqq ´ φ1pp˚pEqqpppEq ´ p˚pEqq ą 0.

Proof. Proposition 9
Suppose p1,p2 P Pi. I want to show that for α P r0, 1s, p˚ “ α.p1 ` p1´ αq.p2 P Pi.
By the supposition we get that there are p1

i ,p
2
i P P with p1

i pAq “ p1pAq and p2
i pAq “ p2pAq for all

A P Ai. Since P is convex, p˚i “ α.p1
i ` p1´ αq.p

2
i P P .

But then for any A P Ai, p˚pAq “ α.p1pAq ` p1 ´ αq.p2pAq “ α.p1
i pAq ` p1 ´ αq.p2

i pAq “ p˚i pAq. So
p˚æAi “ p˚i and p˚ P Pi.

Proof. Proposition 10
This is an adaptation McConway’s [33] proof.
WSFP ñ MP. Assume that F has the WSFP, i.e., there is a function G : A ˚ ˆPpr0, 1sqn Ñ Ppr0, 1sq

such that FpP1, ...,PnqpAq “ GpA,P1pAq, ...,PnpAqq. By WSFP, we have FprP1æA 1˚s, ...
, rPnæA 1˚sqpAq “ GpA, rP1æA 1˚spAq, ..., rPnæA 1˚spAqq. Since G is a function and PipAq “ rPiæA 1˚spAq for
any A P A 1˚ (all such A P A 1˚ are also in A ˚), it follows that GpA, rP1æA 1˚spAq, ..., rPnæA 1˚spAqq “
GpA,P1pAq, ...,PnpAqq “ FpP1, ...,PnqpAq. Hence, FpP1, ...,PnqpAq “ FprP1æA 1˚s, ..., rPnæA 1˚sqpAq.

MP ñ WSFP. Assume that F has the MP. Let A P A ˚. We want to show that FpP1, ...,PnqpAq depends
only on A and PipAq, i “ 1, ..., n.

First, if A “ H or A “ Ω, then, since the range of F is PpPq, FpP1, ...,PnqpAq depends only on
A and PipAq, i “ 1, .., n, for any profile because, setting FpP1, ...,PnqpAq “ GpA,P1pAq, ...,PnpAqq and
FpP11, ...,P1nqpAq “ GpA,P11pAq, ...,P1npAqq, it follows that GpA,P1pAq, ...,PnpAqq “
GpA,P11pAq, ...,P1npAqq. [i.e. GpA,P1pAq, ...,PnpAqq “
GpA,P11pAq, ...,P1npAqq is just t0u or t1u.]

Next, suppose that H ‰ A ‰ Ω. Consider the σ-algebra A 1˚ “ tH, A,Ac,Ωu. A ˚ contains A and has
A 1˚ as a sub-algebra. By MP, then

FpP1, ...,PnqpAq “ FprP1æA 1˚s, ..., rPnæA 1˚sqpAq.

A 1˚ is uniquely defined by A and any probability over A 1 is uniquely determined by the probability of A
under that distribution. So the righthand side of the equation above is determined by A and rPiæA 1spAq “
PipAq.

Proof. Proposition 11
Recall FpP1, ...,PnqpAq “ tppAq : p P FpP1, ...,Pnqu. We let G of the SSFP be GpP1pAq, ...,PnpAqq “

Hp
Ťn
i“1 PipAqq, the convex hull operation applied over

Ťn
i“1 PipAq. It is clear that G depends just on the

probabilities PipAq, i “ 1, ..., n. We need to show that

tppAq : p P FpP1, ...,Pnqu “ Hp
n
ď

i“1

PipAqqu.

But FpP1, ...,Pnq “ Hp
Ťn
i“1pPiqq by assumption. So the identity is trivial.

But since SSFP clearly implies WSFP, WSFP is satisfied, too. By Proposition 10, it follows immediately
that F has the MP.

Because FpP1, ...,Pnq is a set of probability functions, FpP1, ...,PnqpHq “ t0u. Let PipAq “ 0, i “ 1, ..., n.
Since there is a function, G, such that FpP1, ...,PnqpAq “ GpP1pAq, ...,PnpAqq, we have it that

23



t0u “ FpP1, ...,PnqpHq
“ GpP1pHq, ...,PnpHqq
“ GpP1pAq, ...,PnpAqq
“ FpP1, ...,PnqpAq

So, ZPP follows from SSFP.
For any profile pP1, ...,Pnq P Pn, if all Pi are identical, then the convex hull is just tPiu. So F satisfies

unanimity preservation.

Proof. Lemma 1
This generalizes a proof due originally to Girón and Rios and Levi [29, 19].

We want to show that given any two members, pλ,p1λ P FλpP1, ...,Pnq and α P r0, 1s, p‹ “ αpλ`p1´αqp1λ

is in FλpP1, ...,Pnq.
If there is a convex combination of p and p1, p‹ “ βp` p1´ βqp, such that pλ‹ “ p‹, then the convexity

of FλpP1, ...,Pnq is established as a consequence of the convexity of FpP1, ...,Pnq.
Where pλ‹ p¨q “

p‹p¨qλp¨q
ř

ω1PΩ p‹pω
1qλpω1q “

βpp¨qλp¨q`p1´βqp1p¨qλp¨q
β
ř

ω1PΩ ppω1qλpω1q`p1´βq
ř

ω1PΩ p1pω1qλpω1q .

For any α we want to find some β such that:

p‹p¨q “ αpλp¨q ` p1´ αqp1λp¨q “
βpp¨qλp¨q ` p1´ βqp1p¨qλp¨q

β
ř

ω1PΩ ppω1qλpω1q ` p1´ βq
ř

ω1PΩ p1pω1qλpω1q
“ pλ‹ p¨q.

For β “
α
ř

ω˚PΩ p1pω˚qλpω˚q

α
ř

ω˚PΩ p1pω˚qλpω˚q`p1´αq
ř

ω˚PΩ ppω˚qλpω˚q , the equality is verifiable with some tedious algebra.

Proof. Proposition 12
We want FpPλ1 , ...,Pλnq “ FλpP1, ...,Pnq.

FpPλ1 , ...,Pλnq Ď FλpP1, ...,Pnq. It is clear that for each i “ 1, ..., n, Pλi Ď FλpP1, ...,Pnq, since Pi Ď
FpP1, ...,Pnq. By Lemma 1, FλpP1, ...,Pnq is convex. It follows that FpPλ1 , ...,Pλnq Ď FλpP1, ...,Pnq.

We now want FλpP1, ...,Pnq Ď FpPλ1 , ...,Pλnq.
FpP1, ...,Pnq “ Hp

Ťn
i“1 Piq. Hence every p P FpP1, ...,Pnq is a convex combination of elements in

Ťn
i“1 Pi.

Let us denote p “
ř

j αjpj , with pj P
Ťn
i“1 Pi.

On the other hand, FλpP1, ...,Pnq “ tpλ : p P FpP1, ...,Pnq and pλp¨q “ pp¨qλp¨q
ř

ω1PΩ ppω1qλpω1qu.

We show that any p P FλpP1, ...,Pnq is identical to some member of FpPλ1 , ...,Pλnq.

pλpωq “
ppωqλpωq

ř

ω1PΩ ppω1qλpω1q
[Definition]

“

ř

j αjpjpωqλpωq
ř

ω1PΩ

ř

j αjpjpω
1qλpω1q

“

ř

j αjp
λ
j pωq ¨

ř

ω1PΩ pjpω
1qλpω1q

ř

ω1PΩ

ř

j αjpjpω
1qλpω1q

[pjpωqλpωq “ pjpωq
λ ¨

ř

ω1PΩ pjpω
1qλpω1q]

“
ř

j βjp
λ
j pωq P Fppλ1 , ...,pλnq [Since each pj P

Ťn
i“1 Pi, pλj P

Ťn
i“1 Pλi ]

where βj “
αj ¨

ř

ω1PΩ pjpω
1qλpω1q

ř

ω1PΩ

ř

j αjpjpω
1qλpω1q

with βj ě 0 for all j “ 1, ..., n and
ř

j βj “ 1.
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Proof. Proposition 13
Notice first that Irrelevance preservation is not Stochastic preservation. Stochastic preservation states

that if ppAXBq “ ppAqppBq, for all p P
Ťn
i“1 Pi, then, for all p P FpP1, ...,Pnq, ppAXBq “ ppAqppBq.

Suppose that ppA|Bq “ ppAq for all p P
Ťn
i“1 Pi. We want FpP1, ...,PnqpAq “ FBpP1, ...,PnqpAq.

Consider p‹pAq P FpP1, ...,PnqpAq and p‹pAq P FBpP1, ...,PnqpAq. By convexity we have that p‹pAq “
ř

j αjpjpAq with all the pj P
Ťn
i“1 Pi, for appropriate αj .

By Proposition 12 (external Bayesianity), FBpp1, ...,pnqpAq “ FppB1 , ...,pBn qpAq. So p‹pAq P FppB1 , ...,pBn qpAq.
Again using convexity we have that p‹pAq “

ř

j βjp
B
j pAq, with pBj P

Ťn
i“1 PBi and for appropriate βj .

By hypothesis pBi pAq “ pjpAq for all pj P
Ťn
i“1 Pi, pBj P

Ťn
i“1 PBi . Hence, p‹pAq “

ř

j βjp
B
j pAq “

ř

j βjpjpAq. Letting αj “ βj , it follows that Fpp1, ...,pnqpAq “ FBpp1, ...,pnqpAq.
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